This repository was archived by the owner on Nov 26, 2023. It is now read-only.
-
Notifications
You must be signed in to change notification settings - Fork 26
/
Copy pathtiny_symbolic_execution_engine_z3.py
288 lines (248 loc) · 10.7 KB
/
tiny_symbolic_execution_engine_z3.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
#!/usr/bin/env python
# -*- coding: utf-8 -*-
#
# tiny_symbolic_execution_engine_z3.py - Really tiny symbolic execution engine to defeat the home-made 32 bits adder:
# https://github.com/0vercl0k/stuffz/blob/master/llvm-funz/llvm-cpp-frontend-home-made-32bits-adder.cpp
# Copyright (C) 2013 Axel "0vercl0k" Souchet - http://www.twitter.com/0vercl0k
#
# This program is free software: you can redistribute it and/or modify
# it under the terms of the GNU General Public License as published by
# the Free Software Foundation, either version 3 of the License, or
# (at your option) any later version.
#
# This program is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
# GNU General Public License for more details.
#
# You should have received a copy of the GNU General Public License
# along with this program. If not, see <http://www.gnu.org/licenses/>.
#
import sys
sys.path.append(r'C:\Program Files (x86)\z3-430\bin')
from z3 import *
from idc import *
def prove_(f):
'''Taken from http://rise4fun.com/Z3Py/tutorialcontent/guide#h26'''
s = Solver()
s.add(Not(f))
if s.check() == unsat:
return True
return False
class EquationId(object):
def __init__(self, id_):
self.id = id_
def __repr__(self):
return 'EID:%d' % self.id
class Disassembler(object):
'''A simple class to decode easily instruction in IDA'''
def __init__(self, start, end):
self.start = start
self.end = end
self.eip = start
def _decode_instr(self):
'''Returns mnemonic, dst, src'''
mnem = GetMnem(self.eip)
x = []
for i in range(2):
ty = GetOpType(self.eip, i)
# cst
if 5 <= ty <= 7:
x.append(GetOperandValue(self.eip, i))
else:
x.append(GetOpnd(self.eip, i))
return [mnem] + x
def get_next_instruction(self):
'''This is a convenient generator, you can iterator through
each instructions easily'''
while self.eip != self.end:
yield self._decode_instr()
self.eip += ItemSize(self.eip)
class SymbolicExecutionEngine(object):
'''The symbolic execution engine is the class that will
handle the symbolic execution. It will keep a track of the
different equations encountered, and the CPU context at each point of the program.
The symbolic variables have to be found by the user (or using data-taing). This is not
the purpose of this class.
We are lucky, we only need to handle those operations & encodings:
. mov:
. mov reg32, reg32
. mov reg32, [mem]
. mov [mem], reg32
. mov reg32, cst
. shr:
. shr reg32, cst
. shl:
. shl reg32, cst
. and:
. and reg32, cst
. and reg32, reg32
. xor:
. xor reg32, cst
. or:
. or reg32, reg32
. add:
. add reg32, reg32
. add reg32, cst
We also don't care about:
. EFLAGS
. branches
. smaller registers (16/8 bits)
Long story short: it's perfect ; that environment makes really easy to play with symbolic execution.'''
def __init__(self, start, end):
# This is the CPU context at each time
# The value of the registers are index in the equations dictionnary
self.ctx = {
'eax' : None,
'ebx' : None,
'ecx' : None,
'edx' : None,
'esi' : None,
'edi' : None,
'ebp' : None,
'esp' : None,
'eip' : None
}
# The address where the symbolic execution will start
self.start = start
# The address where the symbolic execution will stop
self.end = end
# Our disassembler
self.disass = Disassembler(start, end)
# This is the memory that can be used by the instructions to save temporary values/results
self.mem = {}
# Each equation must have a unique id
self.idx = 0
# The symbolic variables will be stored there
self.sym_variables = []
# Each equation will be stored here
self.equations = {}
# Number of instructions emulated
self.ninstrs = 0
def _check_if_reg32(self, r):
'''XXX: make a decorator?'''
return r.lower() in self.ctx
def _push_equation(self, e):
idx = EquationId(self.idx)
self.equations[idx] = e
self.idx += 1
return idx
def set_reg_with_equation(self, r, e):
if self._check_if_reg32(r) == False:
return
self.ctx[r] = self._push_equation(e)
def get_reg_equation(self, r):
if self._check_if_reg32(r) == False:
return
if isinstance(self.ctx[r], EquationId):
return self.equations[self.ctx[r]]
else:
return self.ctx[r]
def run(self):
'''Run from start address to end address the engine'''
for mnemonic, dst, src in self.disass.get_next_instruction():
if (self.ninstrs % 5000) == 0 and self.ninstrs > 0:
print '%d instructions, %d equations so far...' % (self.ninstrs, len(self.equations))
if mnemonic == 'mov':
# mov reg32, imm32
if dst in self.ctx and isinstance(src, (int, long)):
self.ctx[dst] = src
# mov reg32, reg32
elif src in self.ctx and dst in self.ctx:
self.ctx[dst] = self.ctx[src]
# mov reg32, [mem]
elif (src.find('var_') != -1 or src.find('arg') != -1) and dst in self.ctx:
if src not in self.mem:
# A non-initialized location is trying to be read, we got a symbolic variable!
sym = BitVec('arg%d' % len(self.sym_variables), 32)
self.sym_variables.append(sym)
print 'Trying to read a non-initialized area, we got a new symbolic variable: %s' % sym
self.mem[src] = self._push_equation(sym)
self.ctx[dst] = self.mem[src]
# mov [mem], reg32
elif dst.find('var_') != -1 and src in self.ctx:
self.mem[dst] = self.ctx[src]
else:
raise Exception('This encoding of "mov" is not handled.')
elif mnemonic == 'shr':
# shr reg32, cst
if dst in self.ctx and isinstance(src, (int, long)):
self.set_reg_with_equation(dst, self.get_reg_equation(dst) >> src)
else:
raise Exception('This encoding of "shr" is not handled.')
elif mnemonic == 'shl':
# shl reg32, cst
if dst in self.ctx and isinstance(src, (int, long)):
self.set_reg_with_equation(dst, self.get_reg_equation(dst) << src)
else:
raise Exception('This encoding of "shl" is not handled.')
elif mnemonic == 'and':
# and reg32, cst
if isinstance(src, (int, long)):
x = src
# and reg32, reg32
elif src in self.ctx:
x = self.get_reg_equation(src)
else:
raise Exception('This encoding of "and" is not handled.')
self.set_reg_with_equation(dst, self.get_reg_equation(dst) & x)
elif mnemonic == 'xor':
# xor reg32, cst
if dst in self.ctx and isinstance(src, (int, long)):
if self.ctx[dst] not in self.equations:
self.ctx[dst] ^= src
else:
self.set_reg_with_equation(dst, self.get_reg_equation(dst) ^ src)
else:
raise Exception('This encoding of "xor" is not handled.')
elif mnemonic == 'or':
# or reg32, reg32
if dst in self.ctx and src in self.ctx:
self.set_reg_with_equation(dst, self.get_reg_equation(dst) | self.get_reg_equation(src))
else:
raise Exception('This encoding of "or" is not handled.')
elif mnemonic == 'add':
# add reg32, reg32
if dst in self.ctx and src in self.ctx:
self.set_reg_with_equation(dst, self.get_reg_equation(dst) + self.get_reg_equation(src))
# add reg32, cst
elif dst in self.ctx and isinstance(src, (int, long)):
self.set_reg_with_equation(dst, self.get_reg_equation(dst) + src)
else:
raise Exception('This encoding of "add" is not handled.')
else:
print mnemonic, dst, src
raise Exception('This instruction is not handled.')
self.ninstrs += 1
def _simplify_additions(self, eq):
'''The idea in this function is to help Z3 to simplify our big bitvec-arithmetic
expression. It's simple, in eq we have a big expression with two symbolic variables (arg0 & arg1)
and a lot of bitvec arithmetic. Somehow, the simplify function is not clever enough to reduce the
equation.
The idea here is to use the prove function in order to see if we can simplify an equation by an addition of the
symbolic variables.'''
# The two expressions are equivalent ; we got a simplification!
if prove_(Sum(self.sym_variables) == eq):
return Sum(self.sym_variables)
return eq
def get_reg_equation_simplified(self, reg):
eq = self.get_reg_equation(reg)
eq = simplify(self._simplify_additions(eq))
return eq
def main():
'''Here we will try to attack the semantic-preserving obfuscations
I talked about in "Obfuscation of steel: meet my Kryptonite." : http://0vercl0k.tuxfamily.org/bl0g/?p=260.
The idea is to defeat those obfuscations using a tiny symbolic execution engine.'''
# sym = SymbolicExecutionEngine(0x804845A, 0x0804A17C) # for simple adder
sym = SymbolicExecutionEngine(0x804823C, 0x08072284) # adder kryptonized
print 'Launching the engine..'
sym.run()
print 'Done. %d equations built, %d assembly lines emulated, %d virtual memory cells used' % (len(sym.equations), sym.ninstrs, len(sym.mem))
print 'CPU state at the end:'
print sym.ctx
print 'Retrieving and simplifying the EAX register..'
eax = sym.get_reg_equation_simplified('eax')
print 'EAX=%r' % eax
return 1
if __name__ == '__main__':
main()