-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathrun_data_assimilation.jl
executable file
·364 lines (291 loc) · 13 KB
/
run_data_assimilation.jl
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
#!/usr/bin/env julia
#
# This is the main file for data assimilation runs.
#
#
# 1. loads up a configuration file,
# 2. obtains data from a WRF model,
# 3. construct covariate vectors
# 3. reads in observations and metadata for a list of stations,
# 4. runs the moisture model and the assimilation mechanism.
#
#
using Calendar
import Calendar.CalendarTime
using Storage
import Storage.setup_tag, Storage.spush, Storage.next_frame, Storage.flush_frame
using Stations
import Stations.Station, Stations.Observation, Stations.load_station_info,
Stations.load_station_data, Stations.build_observation_data, Stations.register_to_grid, Stations.nearest_grid_point, Stations.obs_value, Stations.obs_station_id
using Kriging
import Kriging.trend_surface_model_kriging
using NetCDF
using WRF
using FM
import FM.FMModel, FM.advance_model, FM.kalman_update
function create_fm_variables(file_name)
# first extract the dimensions
nc = NetCDF.open(file_name)
we_dim = nc.dim["west_east"]
sn_dim = nc.dim["south_north"]
t_dim = nc.dim["Time"]
NetCDF.close(nc)
var_names = ASCIIString[ "FM1", "FM10", "FM100" ]
long_names = ["1hr fuel moisture", "10hr fuel moisture", "100hr fuel moisture"]
for i in 1:3
if !haskey(nc.vars, var_names[i])
atts = {"coordinates"=>"XLONG XLAT","units"=>"kg/kg","stagger"=>"","MemoryOrder"=>"XY ","description"=>long_names[i]}
NetCDF.nccreate(file_name, var_names[i], atts, we_dim, sn_dim, t_dim)
println("INFO: created variable $(var_names[i])")
else
println("INFO: variable $(var_names[i]) already existed")
end
end
end
function main(args)
# the arguments passed to the julia program do not include program name
if length(args) != 1
println("Usage: julia run_data_assimilation.jl cfg_file")
exit(1)
end
t1 = Calendar.now()
println("INFO: run_data_assimilation.jl started on $t1")
### Read configuration file and setup the system
println("INFO: reading in config file $(args[1])")
cfg = evalfile(args[1])
# create the output directory if it does not exist
println("INFO: output directory is ", cfg["output_dir"])
!ispath(cfg["output_dir"]) && mkdir(cfg["output_dir"])
# configure Storage mechanism
Storage.sopen(cfg["output_dir"], "moisture_model_v2_diagnostics.txt", "frame")
# setup Storage & output policies for interesting quantities
setup_tag("mt", true, true)
setup_tag("fm1_model_state_assim", false, false)
setup_tag("fm1_model_var", false, false)
setup_tag("fm10_model_state", false, false)
setup_tag("fm10_model_state_assim", false, false)
setup_tag("fm10_model_var", false, false)
setup_tag("fm100_model_state_assim", false, false)
setup_tag("fm100_model_var", false, false)
setup_tag("fm10_model_na_state", false, false)
setup_tag("fm10_model_deltas", false, false)
setup_tag("kriging_beta", true, true)
setup_tag("kriging_xtx_cond", false, true)
setup_tag("kriging_field", false, false)
setup_tag("kriging_variance", false, false)
setup_tag("kriging_sigma2_eta", true, true)
setup_tag("kriging_iters", false, true)
setup_tag("kriging_subzero_s2_estimates", false, true)
setup_tag("model_raws_mae", false, true)
setup_tag("model_raws_mae_assim", false, true)
setup_tag("model_na_raws_mae", false, true)
# co-located model/model_na/kriging field/observation
setup_tag("kriging_obs", false, false)
setup_tag("kriging_obs_station_ids", false, false)
setup_tag("kriging_obs_ngp", false, false)
setup_tag("kriging_errors", true, true)
setup_tag("kalman_gain_fm10", false, false)
### Load WRF output data
t1 = Calendar.now()
println("INFO: configuration complete, loading WRF data.")
# read in data from the WRF output file pointed to by cfg
w = WRF.load_wrf_data(cfg["wrf_output"], ["HGT"])
# the terrain height need not be stored for all time points
WRF.slice_field(w, "HGT")
# extract WRF fields
lat, lon = WRF.lat(w), WRF.lon(w)
dsize = size(lat)
wtm = WRF.times(w)
println("INFO: WRF grid size is $(dsize[1]) x $(dsize[2]) and found $(length(wtm)) timepoints.")
# retrieve equilibria and rain (these are already precomputed)
Ed, Ew = WRF.field(w, "Ed"), WRF.field(w, "Ew")
rain = WRF.field(w, "RAIN")
hgt = WRF.field(w, "HGT")
T = WRF.interpolated_field(w, "T2")
P = WRF.interpolated_field(w, "PSFC")
t2 = Calendar.now()
println("INFO: WRF output loaded, sliced and diced [$(t2-t1)].")
### Load observation data from stations
io = open(join([cfg["station_info_dir"], cfg["station_info"]], "/"), "r")
station_ids = filter(x -> x[1] != '#', map(x -> strip(x), readlines(io)))
close(io)
# load each station from its info and observation files
stations = Station[]
for sid in station_ids
s = load_station_info(join([cfg["station_info_dir"], string(sid, ".info")], "/"))
load_station_data(s, join([cfg["station_data_dir"], string(sid, ".obs")], "/"))
register_to_grid(s, lat, lon)
# println("STATION: $(s.id), $(s.loc), ngp is $(s.ngp) with lat $(lat[s.ngp[1], s.ngp[2]]) and lon $(lon[s.ngp[1], s.ngp[2]]).")
push!(stations, s)
end
# build the observation data from stations
obs_fm10 = build_observation_data(stations, "FM")
obs_times = keys(obs_fm10)
t3 = Calendar.now()
println("INFO: Station data loaded and preprocessed [$(t3 - t2)].")
### Initialize model
# number of simulated fuel components
Nf = 3
# construct initial conditions (FIXME: can we do better here?)
E = squeeze(0.5 * (Ed[:,:,2] + Ew[:,:,2]), 3)
# set up parameters
Q = diagm(cfg["Q"])
P0 = diagm(cfg["P0"])
mV = zeros(Float64, dsize)
pred = zeros(Float64, dsize)
mresV = zeros(Float64, dsize)
mid = zeros(Int32, dsize)
Kg = zeros(Float64, (dsize[1], dsize[2], 9))
K = zeros(Float64, dsize)
V = zeros(Float64, dsize)
# prepare static & time-varying covariates
cov_ids = cfg["covariates"]
st_covar_map = [:lon => lon,
:lat => lat,
:elevation => hgt,
:constant => ones(Float64, dsize) ]
dyn_covar_map = [:temperature => T, :pressure => P, :rain => rain]
Xd3 = length(cov_ids) + 1
X = zeros(Float64, (dsize[1], dsize[2], Xd3))
Xr = zeros(Float64, (dsize[1], dsize[2], Xd3))
for i in 2:Xd3
cov_id = cov_ids[i-1]
if haskey(st_covar_map, cov_id)
println("INFO: processing static covariate $cov_id.")
v = st_covar_map[cov_id]
Xr[:,:,i] = v
elseif haskey(dyn_covar_map, cov_id)
println("INFO: found dynamic covariate $(cov_id).")
else
error("ERROR: unknown covariate $(cov_id) encountered, fatal.")
end
end
println("INFO: there are $Xd3 covariates (including model state).")
t1 = Calendar.now()
println("INFO: starting simulation at $t1 ...")
dt = (wtm[2] - wtm[1]).millis / 1000
assim_time_win = cfg["assimilation_time_window"]
println("INFO: time step from WRF is $dt s, assimilation time window is $assim_time_win s.")
# construct model grid from fuel parameters
Tk = [ 1.0, 10.0, 100.0 ]
models = Array(FMModel, dsize)
models_na = Array(FMModel, dsize)
for i in 1:dsize[1]
for j in 1:dsize[2]
geo_loc = (lat[i,j], lon[i,j])
models[i,j] = FMModel(geo_loc, Nf, E[i,j], P0, Tk)
models_na[i,j] = FMModel(geo_loc, Nf, E[i,j], P0, Tk)
end
end
# create the new variables in the wrfout file for storing fuel moisture
println("INFO: creating FM variables in wrfout file")
create_fm_variables(cfg["wrf_output"])
nc = NetCDF.open(cfg["wrf_output"], NetCDF.NC_WRITE)
### Run the model and data assimilation
for t in 2:length(wtm)
mt = wtm[t]
spush("mt", mt)
# run the model update (in parallel if possible)
for i in 1:dsize[1]
for j in 1:dsize[2]
advance_model(models[i,j], Ed[i, j, t-1], Ew[i, j, t-1], rain[i, j, t-1], dt, Q)
advance_model(models_na[i,j], Ed[i, j, t-1], Ew[i, j, t-1], rain[i, j, t-1], dt, Q)
end
end
# store the model state in an array (and store in output frame)
fm10_model_state = [ models[i,j].m_ext[2] for i=1:dsize[1], j=1:dsize[2] ]
fm10_model_na_state = [ models_na[i,j].m_ext[2] for i=1:dsize[1], j=1:dsize[2] ]
fm10_model_var = [ models[i,j].P[2,2] for i=1:dsize[1], j=1:dsize[2] ]
spush("fm10_model_state", fm10_model_state)
spush("fm10_model_na_state", fm10_model_na_state)
spush("fm10_model_var", fm10_model_var)
# if observation data for this timepoint is available
obs_i = Observation[]
tm_valid_now = filter(x -> abs((mt - x).millis) / 1000.0 <= assim_time_win/2, obs_times)
# gather all observations
for tvn in tm_valid_now append!(obs_i, obs_fm10[tvn]) end
# exclude zero observations - must be sensor failure
obs_i = filter(x -> obs_value(x) > 0, obs_i)
# if there are no valid observations, continue with next time step, else run kriging
if length(obs_i) > 0
# set the current fm10 model state as the covariate
X[:,:,1] = fm10_model_state
# fm10_norm = sum(fm10_model_state.^2)^0.5
println("INFO: assimilating $(length(obs_i)) observations.")
# loop over additional covariates
for i in 2:Xd3
cov_id = cov_ids[i-1]
if haskey(st_covar_map, cov_id)
# just copy and rescale corresponding static covariate
X[:,:,i] = Xr[:,:,i]
elseif haskey(dyn_covar_map, cov_id)
# retrieve the field pointed to by the dynamic covariate id
F = dyn_covar_map[cov_id]
X[:,:,i] = squeeze(F[:,:,t], 3)
else
error("FATAL: found unknown covariate.")
end
end
# store diagnostic information
ngp_list = map(x -> nearest_grid_point(x), obs_i)
stat_ids = map(x -> obs_station_id(x), obs_i)
m_at_obs = Float64[X[i, j, 1] for (i,j) in ngp_list]
m_na_at_obs = Float64[models_na[i,j].m_ext[2] for (i,j) in ngp_list]
raws = Float64[obs_value(o) for o in obs_i]
spush("model_raws_mae", mean(abs(m_at_obs - raws)))
spush("model_na_raws_mae", mean(abs(m_na_at_obs - raws)))
spush("kriging_obs", raws)
spush("kriging_obs_station_ids", stat_ids)
spush("kriging_obs_ngp", ngp_list)
# compute the kriging estimates and fill in pre-allocated arrays
trend_surface_model_kriging(obs_i, X, K, V)
# push diagnostic outputs
spush("kriging_field", K)
spush("kriging_variance", V)
# execute the Kalman update at each grid point
Kp = zeros(1)
Vp = zeros(1,1)
Kg = zeros(Float64, dsize)
fuel_types = [2]
for i in 1:dsize[1]
for j in 1:dsize[2]
Kp[1] = K[i,j]
Vp[1,1] = V[i,j]
Kg[i,j] = kalman_update(models[i,j], Kp, Vp, fuel_types)[1,1]
end
end
# push the fm10 model state after the assimilation
fm10_model_state = [ models[i,j].m_ext[2] for i=1:dsize[1], j=1:dsize[2] ]
spush("fm10_model_state_assim", fm10_model_state)
# retrieve adjustments to time constants and to equilibria
fm10_adj = zeros(Float64, (6, dsize[1], dsize[2]))
for i in 1:dsize[1]
for j in 1:dsize[2]
fm10_adj[:,i,j] = models[i,j].m_ext[Nf+1:2*Nf+3]
end
end
fm10_adj_max = [ max(abs(fm10_adj[i,:,:])) for i in 1:6 ]
spush("fm10_model_deltas", fm10_adj_max)
# gather model values at ngp points after assimilation
m_at_obs = Float64[fm10_model_state[i, j] for (i,j) in ngp_list]
spush("model_raws_mae_assim", mean(abs(m_at_obs - raws)))
spush("kalman_gain_fm10", Kg)
# move to the next storage frame
next_frame()
end # if there is anything to assimilate
# store current assimilated state in the wrfout file
fm_stor = zeros(Float64, (dsize[1], dsize[2], 1))
fm_stor[:,:,1] = [ models[i,j].m_ext[1] for i=1:dsize[1], j=1:dsize[2] ]
NetCDF.putvar(nc, "FM1", [1, 1, t], fm_stor)
fm_stor[:,:,1] = [ models[i,j].m_ext[2] for i=1:dsize[1], j=1:dsize[2] ]
NetCDF.putvar(nc, "FM10", [1, 1, t], fm_stor)
fm_stor[:,:,1] = [ models[i,j].m_ext[3] for i=1:dsize[1], j=1:dsize[2] ]
NetCDF.putvar(nc, "FM100", [1, 1, t], fm_stor)
end # for each time point
# Close down the storage system
Storage.sclose()
NetCDF.close(nc)
t2 = Calendar.now()
println("INFO: simulation completed at $t2 after $(t2-t1).")
end
main(ARGS)