Skip to content

ML - Module06 - ex05 - Typo in Docstring and examples #262

@Tablerase

Description

@Tablerase

In docstring (return in case of empty x) :

"""Computes the normalized version of a non-empty numpy.ndarray using the z-score standardization.

    Args:
        x: has to be an numpy.ndarray, a vector.
    Returns:
        x' as a numpy.ndarray.
        None if x is a non-empty numpy.ndarray or not a numpy.ndarray.
    Raises:
        This function shouldn't raise any Exception.

to

"""Computes the normalized version of a non-empty numpy.ndarray using the z-score standardization.

    Args:
        x: has to be an numpy.ndarray, a vector.
    Returns:
        x' as a numpy.ndarray.
        None if x is an empty numpy.ndarray or not a numpy.ndarray.
    Raises:
        This function shouldn't raise any Exception.

And different numpy alias (numpy and np) in examples:

# Example 1:
X = numpy.array([0, 15, -9, 7, 12, 3, -21])
zscore(X)
# Output:
array([-0.08620324, 1.2068453 , -0.86203236, 0.51721942, 0.94823559,
0.17240647, -1.89647119])
# Example 2:
Y = np.array([2, 14, -13, 5, 12, 4, -19]).reshape((-1, 1))
zscore(Y)
# Output:
array([ 0.11267619, 1.16432067, -1.20187941, 0.37558731, 0.98904659,
0.28795027, -1.72770165])

to

# Example 1:
    X = np.array([0, 15, -9, 7, 12, 3, -21])
    zscore(X)
    # Output:
    # array([-0.08620324, 1.2068453 , -0.86203236, 0.51721942, 0.94823559,
    # 0.17240647, -1.89647119])

    # Example 2:
    Y = np.array([2, 14, -13, 5, 12, 4, -19]).reshape((-1, 1))
    zscore(Y)
    # Output:
    # array([[ 0.11267619]
    #  [ 1.16432067]
    #  [-1.20187941]
    #  [ 0.37558731]
    #  [ 0.98904659]
    #  [ 0.28795027]
    #  [-1.72770165]])

Metadata

Metadata

Assignees

No one assigned

    Labels

    No labels
    No labels

    Type

    No type

    Projects

    No projects

    Milestone

    No milestone

    Relationships

    None yet

    Development

    No branches or pull requests

    Issue actions