-
Notifications
You must be signed in to change notification settings - Fork 41
Open
Description
In docstring (return in case of empty x) :
"""Computes the normalized version of a non-empty numpy.ndarray using the z-score standardization.
Args:
x: has to be an numpy.ndarray, a vector.
Returns:
x' as a numpy.ndarray.
None if x is a non-empty numpy.ndarray or not a numpy.ndarray.
Raises:
This function shouldn't raise any Exception.
to
"""Computes the normalized version of a non-empty numpy.ndarray using the z-score standardization.
Args:
x: has to be an numpy.ndarray, a vector.
Returns:
x' as a numpy.ndarray.
None if x is an empty numpy.ndarray or not a numpy.ndarray.
Raises:
This function shouldn't raise any Exception.
And different numpy alias (numpy and np) in examples:
# Example 1:
X = numpy.array([0, 15, -9, 7, 12, 3, -21])
zscore(X)
# Output:
array([-0.08620324, 1.2068453 , -0.86203236, 0.51721942, 0.94823559,
0.17240647, -1.89647119])
# Example 2:
Y = np.array([2, 14, -13, 5, 12, 4, -19]).reshape((-1, 1))
zscore(Y)
# Output:
array([ 0.11267619, 1.16432067, -1.20187941, 0.37558731, 0.98904659,
0.28795027, -1.72770165])
to
# Example 1:
X = np.array([0, 15, -9, 7, 12, 3, -21])
zscore(X)
# Output:
# array([-0.08620324, 1.2068453 , -0.86203236, 0.51721942, 0.94823559,
# 0.17240647, -1.89647119])
# Example 2:
Y = np.array([2, 14, -13, 5, 12, 4, -19]).reshape((-1, 1))
zscore(Y)
# Output:
# array([[ 0.11267619]
# [ 1.16432067]
# [-1.20187941]
# [ 0.37558731]
# [ 0.98904659]
# [ 0.28795027]
# [-1.72770165]])
Metadata
Metadata
Assignees
Labels
No labels