Skip to content

parameter devicePlugin.deviceSplitCount does not work #35

@2232729885

Description

@2232729885

i use helm to install k8s-vgpu-scheduler, set devicePlugin.deviceSplitCount = 5. after deployed successfully, i run 'kubectl describe node ', i can see the allocatable resources 'nvidia.com/gpu' count 40 (it has 8 A40 card in machine). Then i create 6 pod, every pod assign 1 'nvidia.com/gpu', but when i create a pod which needs 3 'nvidia.com/gpu',the k8s said the pod can't not be schedulerd.

the logs of vgpu-scheduler is showed below, it seems said only 2 gpu card can usable?
image
I0313 00:58:35.594437 1 score.go:65] "devices status" I0313 00:58:35.594467 1 score.go:67] "device status" device id="GPU-0707087e-8264-4ba4-bc45-30c70272ec4a" device detail={"Id":"GPU-0707087e-8264-4ba4-bc45-30c70272ec4a","Index":0,"Used":0,"Count":10,"Usedmem":0,"Totalmem":46068,"Totalcore":100,"Usedcores":0,"Numa":0,"Type":"NVIDIA-NVIDIA A40","Health":true} I0313 00:58:35.594519 1 score.go:67] "device status" device id="GPU-b3e35ad4-81ee-0aee-9865-4787748b93ce" device detail={"Id":"GPU-b3e35ad4-81ee-0aee-9865-4787748b93ce","Index":1,"Used":0,"Count":10,"Usedmem":0,"Totalmem":46068,"Totalcore":100,"Usedcores":0,"Numa":0,"Type":"NVIDIA-NVIDIA A40","Health":true} I0313 00:58:35.594542 1 score.go:67] "device status" device id="GPU-d38a391c-9f2f-395e-2f91-1785a648f6c4" device detail={"Id":"GPU-d38a391c-9f2f-395e-2f91-1785a648f6c4","Index":2,"Used":1,"Count":10,"Usedmem":46068,"Totalmem":46068,"Totalcore":100,"Usedcores":0,"Numa":0,"Type":"NVIDIA-NVIDIA A40","Health":true} I0313 00:58:35.594568 1 score.go:67] "device status" device id="GPU-7099a282-5a75-55f8-0cd0-a4b48098ae1e" device detail={"Id":"GPU-7099a282-5a75-55f8-0cd0-a4b48098ae1e","Index":3,"Used":1,"Count":10,"Usedmem":46068,"Totalmem":46068,"Totalcore":100,"Usedcores":0,"Numa":0,"Type":"NVIDIA-NVIDIA A40","Health":true} I0313 00:58:35.594600 1 score.go:67] "device status" device id="GPU-56967eb2-30b7-c808-367a-225b8bd8a12e" device detail={"Id":"GPU-56967eb2-30b7-c808-367a-225b8bd8a12e","Index":4,"Used":1,"Count":10,"Usedmem":46068,"Totalmem":46068,"Totalcore":100,"Usedcores":0,"Numa":0,"Type":"NVIDIA-NVIDIA A40","Health":true} I0313 00:58:35.594639 1 score.go:67] "device status" device id="GPU-54191405-e5a9-2f7b-8ac4-f4e86c6669cb" device detail={"Id":"GPU-54191405-e5a9-2f7b-8ac4-f4e86c6669cb","Index":5,"Used":1,"Count":10,"Usedmem":46068,"Totalmem":46068,"Totalcore":100,"Usedcores":0,"Numa":0,"Type":"NVIDIA-NVIDIA A40","Health":true} I0313 00:58:35.594671 1 score.go:67] "device status" device id="GPU-e731cd15-879f-6d00-485d-d1b468589de9" device detail={"Id":"GPU-e731cd15-879f-6d00-485d-d1b468589de9","Index":6,"Used":1,"Count":10,"Usedmem":46068,"Totalmem":46068,"Totalcore":100,"Usedcores":0,"Numa":0,"Type":"NVIDIA-NVIDIA A40","Health":true} I0313 00:58:35.594693 1 score.go:67] "device status" device id="GPU-865edbf8-5d63-8e57-5e14-36682179eaf6" device detail={"Id":"GPU-865edbf8-5d63-8e57-5e14-36682179eaf6","Index":7,"Used":1,"Count":10,"Usedmem":46068,"Totalmem":46068,"Totalcore":100,"Usedcores":0,"Numa":0,"Type":"NVIDIA-NVIDIA A40","Health":true} I0313 00:58:35.594725 1 score.go:90] "Allocating device for container request" pod="default/gpu-pod-2" card request={"Nums":5,"Type":"NVIDIA","Memreq":0,"MemPercentagereq":100,"Coresreq":0} I0313 00:58:35.594757 1 score.go:93] "scoring pod" pod="default/gpu-pod-2" Memreq=0 MemPercentagereq=100 Coresreq=0 Nums=5 device index=7 device="GPU-b3e35ad4-81ee-0aee-9865-4787748b93ce" I0313 00:58:35.594800 1 score.go:140] "first fitted" pod="default/gpu-pod-2" device="GPU-b3e35ad4-81ee-0aee-9865-4787748b93ce" I0313 00:58:35.594829 1 score.go:93] "scoring pod" pod="default/gpu-pod-2" Memreq=0 MemPercentagereq=100 Coresreq=0 Nums=4 device index=6 device="GPU-0707087e-8264-4ba4-bc45-30c70272ec4a" I0313 00:58:35.594850 1 score.go:140] "first fitted" pod="default/gpu-pod-2" device="GPU-0707087e-8264-4ba4-bc45-30c70272ec4a" I0313 00:58:35.594869 1 score.go:93] "scoring pod" pod="default/gpu-pod-2" Memreq=0 MemPercentagereq=100 Coresreq=0 Nums=3 device index=5 device="GPU-865edbf8-5d63-8e57-5e14-36682179eaf6" I0313 00:58:35.594889 1 score.go:93] "scoring pod" pod="default/gpu-pod-2" Memreq=0 MemPercentagereq=100 Coresreq=0 Nums=3 device index=4 device="GPU-e731cd15-879f-6d00-485d-d1b468589de9" I0313 00:58:35.594911 1 score.go:93] "scoring pod" pod="default/gpu-pod-2" Memreq=0 MemPercentagereq=100 Coresreq=0 Nums=3 device index=3 device="GPU-54191405-e5a9-2f7b-8ac4-f4e86c6669cb" I0313 00:58:35.594929 1 score.go:93] "scoring pod" pod="default/gpu-pod-2" Memreq=0 MemPercentagereq=100 Coresreq=0 Nums=3 device index=2 device="GPU-56967eb2-30b7-c808-367a-225b8bd8a12e" I0313 00:58:35.594948 1 score.go:93] "scoring pod" pod="default/gpu-pod-2" Memreq=0 MemPercentagereq=100 Coresreq=0 Nums=3 device index=1 device="GPU-7099a282-5a75-55f8-0cd0-a4b48098ae1e" I0313 00:58:35.594966 1 score.go:93] "scoring pod" pod="default/gpu-pod-2" Memreq=0 MemPercentagereq=100 Coresreq=0 Nums=3 device index=0 device="GPU-d38a391c-9f2f-395e-2f91-1785a648f6c4" I0313 00:58:35.594989 1 score.go:211] "calcScore:node not fit pod" pod="default/gpu-pod-2" node="gpu-230"

the kubectl describe node gpu-230 said:
image

the nvidia-smi said:
image

so somebody can solve this issue? thanks

Metadata

Metadata

Assignees

No one assigned

    Labels

    No labels
    No labels

    Type

    No type

    Projects

    No projects

    Milestone

    No milestone

    Relationships

    None yet

    Development

    No branches or pull requests

    Issue actions