forked from prouast/equirectangular-remap
-
Notifications
You must be signed in to change notification settings - Fork 3
/
Copy pathprojection.c
513 lines (423 loc) · 14.6 KB
/
projection.c
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
#include <stdio.h>
#include <stdlib.h>
#include <libgen.h>
#include <string.h>
#include <getopt.h>
#include <math.h>
/* Compile with: gcc projection.c -Wall -o project -lm
* math.h does not like to be linked directly...
* Example call: ./project -x test_x.pgm -y test_y.pgm -h 400 -w 400 -r 400 -c 400 -m equirectangular --verbose
* ./project -x fly360_x.pgm -y fly360_y.pgm -h 1504 -w 1504 -r 752 -c 1504 -m equirectangular --verbose
* Example command: ffmpeg -i input.jpg -i test_x.pgm -i test_y.pgm -lavfi remap out.png
* ffmpeg -i fly360.mp4 -i fly360_x.pgm -i fly360_y.pgm -lavfi remap out.mp4
*
* # Sources
* - https://trac.ffmpeg.org/wiki/RemapFilter
* - https://en.wikipedia.org/wiki/Spherical_coordinate_system
* - https://en.wikipedia.org/wiki/Stereographic_projection
* - https://en.wikipedia.org/wiki/Equirectangular_projection
* - http://paulbourke.net/geometry/transformationprojection/
*/
/* Flag set by ‘--verbose’. */
static int verbose_flag;
static double magicnum = .8875; // scaling for theta-lens
typedef struct double2 {
double x;
double y;
} double2;
typedef struct double3 {
double x;
double y;
double z;
} double3;
typedef struct polar2 {
double r;
double theta;
} polar2;
typedef struct polar3 {
double r;
double theta;
double phi;
} polar3;
enum CameraMode {
FRONT,
THETAS,
EQUIRECTANGULAR
};
typedef struct configuration {
char* xmap_filename;
char* ymap_filename;
int xmap_set;
int ymap_set;
int rows; // target
int cols; // target
int height; // source
int width; // source
int rows_set;
int cols_set;
int height_set;
int width_set;
int crop;
enum CameraMode mode;
} configuration;
/* Store command line options in configuration */
configuration parse_options(int argc, char **argv) {
int c;
configuration po; // to hold parsed options
po.xmap_filename = NULL;
po.ymap_filename = NULL;
po.xmap_set = 0;
po.ymap_set = 0;
po.rows = 0;
po.cols = 0;
po.rows_set = 0;
po.cols_set = 0;
po.height_set = 0;
po.width_set = 0;
po.mode = THETAS; // default
while (1) {
static struct option long_options[] = {
/* These options set a flag. */
{"verbose", no_argument, &verbose_flag, 1},
{"brief", no_argument, &verbose_flag, 0},
/* These options don’t set a flag.
We distinguish them by their indices. */
{"help", no_argument, 0, 'q'},
/* options with arg*/
{"xmap", required_argument, 0, 'x'},
{"ymap", required_argument, 0, 'y'},
{"rows", required_argument, 0, 'r'}, // target
{"cols", required_argument, 0, 'c'}, // target
{"height", required_argument, 0, 'h'}, // source
{"width", required_argument, 0, 'w'}, // source
{"mode", required_argument, 0, 'm'},
{"crop", required_argument, 0, 'b'},
{0, 0, 0, 0}
};
/* getopt_long stores the option index here. */
int option_index = 0;
c = getopt_long (argc, argv, "qx:y:r:c:h:w:m:b:",
long_options, &option_index);
/* Detect the end of the options. */
if (c == -1)
break;
switch (c) {
/* If this option set a flag, do nothing else now. */
case 0:
if (long_options[option_index].flag != 0)
break;
printf("option %s", long_options[option_index].name);
if (optarg)
printf (" with arg %s", optarg);
printf ("\n");
break;
case 'x':
po.xmap_filename = optarg;
po.xmap_set++;
break;
case 'y':
po.ymap_filename = optarg;
po.ymap_set++;
break;
case 'h':
po.height = atoi(optarg);
po.height_set++;
break;
case 'w':
po.width = atoi(optarg);
po.width_set++;
break;
case 'c':
po.cols = atoi(optarg);
po.cols_set++;
break;
case 'r':
po.rows = atoi(optarg);
po.rows_set++;
break;
case 'b':
po.crop = atoi(optarg);
break;
case 'm':
if (strcmp(optarg, "front") == 0) {
po.mode = FRONT;
} else if (strcmp(optarg, "theta") == 0) {
po.mode = THETAS;
} else if (strcmp(optarg, "equirectangular") == 0) {
po.mode = EQUIRECTANGULAR;
} else /* default: */ {
printf("Mode %s not implemented \n",optarg); exit(1);
}
break;
/* getopt_long already printed an error message. */
case '?':
case 'q':
printf ("Usage: %s -x|--xmap FILE_x.pgm -y|--ymap FILE_y.pgm -h|--height 300 -w|--width 400 -r|--rows 600 -c|--cols 800 \n", argv[0]);
printf ("h,w is source size, r,c is targetsize \n");
exit(1);
break;
default:
abort();
}
}
/* Instead of reporting ‘--verbose’
and ‘--brief’ as they are encountered,
we report the final status resulting from them. */
if (verbose_flag) {
switch(po.mode) {
case FRONT:
printf("Mode: Front proj\n");
break;
case THETAS:
printf("Mode: Ricoh Theta S proj\n");
break;
case EQUIRECTANGULAR:
printf("Mode: Equirectangular proj\n");
break;
default:
printf("Mode not in verbose, exiting\n");
exit(1);
}
}
/* Print any remaining command line arguments (not options). */
if (optind < argc) {
printf ("ERROR: non-option ARGV-elements: ");
while (optind < argc){
printf ("%s ", argv[optind++]);
}
putchar ('\n');
exit(1);
}
if (po.xmap_set != 1 || po.ymap_set != 1)
{
printf("ERROR: Xmap and ymap are mandatory arguments and have to appear only once!\ntry --help for help\n\n ");
exit(-1);
}
if (po.rows_set != 1 || po.cols_set != 1)
{
printf("ERROR: Target Rows and Cols are mandatory arguments and have to appear only once!\ntry --help for help\n\n ");
exit(-1);
}
if (po.height_set != 1 || po.width_set != 1)
{
printf("ERROR: Source Height and Width are mandatory arguments and have to appear only once!\ntry --help for help\n\n ");
exit(-1);
}
return po;
}
/* Write to file */
int pgmWrite_ASCII(char* filename, int rows, int cols, int **image, char* comment_string) {
FILE* file; /* pointer to the file buffer */
long nwritten = 0; /* counter for the number of pixels written */
long x, y; /* for loop counters */
int maxval = 65535; /* maximum value in the image array */
/* open the file; write header and comments specified by the user. */
if ((file = fopen(filename, "w")) == NULL) {
printf("ERROR: file open failed\n");
return(0);
}
fprintf(file,"P2\n");
if (comment_string != NULL) fprintf(file,"# %s \n", comment_string);
/* write the dimensions of the image */
fprintf(file,"%i %i \n", cols, rows);
/* NOTE: MAXIMUM VALUE IS WHITE; COLOURS ARE SCALED FROM 0 - */
/* MAXVALUE IN A .PGM FILE. */
/* WRITE MAXIMUM VALUE TO FILE */
fprintf(file, "%d\n", (int)maxval);
/* Write data */
for (y = 0; y < rows; y++) {
for (x = 0; x < cols; x++) {
fprintf(file,"%i ", image[y][x]);
nwritten++;
}
fprintf(file, "\n");
}
fprintf(file, "\n");
printf ("\nNumber of pixels total (from rows * cols): %i\n", rows * cols);
printf ("Number of pixels written in file %s: %ld\n\n", filename, nwritten);
fclose(file);
return(1);
}
int ppmWrite_ASCII(char* filename, int rows, int cols, int **image1, int **image2, char* comment_string, int maxrange) {
FILE* file; /* pointer to the file buffer */
long nwritten = 0; /* counter for the number of pixels written */
long x, y; /* for loop counters */
int maxval = maxrange; /* maximum value in the image array */
// maxval = 65535; //breaks previews, fixes ffmpeg
/* open the file; write header and comments specified by the user. */
if ((file = fopen(filename, "w")) == NULL) {
printf("ERROR: file open failed\n");
return(0);
}
fprintf(file,"P3\n");
if (comment_string != NULL) fprintf(file,"# %s \n", comment_string);
/* write the dimensions of the image */
fprintf(file,"%i %i \n", cols, rows);
/* NOTE: MAXIMUM VALUE IS WHITE; COLOURS ARE SCALED FROM 0 - */
/* MAXVALUE IN A .PGM FILE. */
/* WRITE MAXIMUM VALUE TO FILE */
fprintf(file, "%d\n", (int)maxval);
/* Write data */
for (y = 0; y < rows; y++) {
for (x = 0; x < cols; x++) {
fprintf(file,"%i ", image1[y][x]);
fprintf(file,"%i ", image2[y][x]);
fprintf(file,"%i ", 0);
nwritten++;
}
fprintf(file, "\n");
}
fprintf(file, "\n");
printf ("\nNumber of pixels total (from rows * cols): %i\n", rows * cols);
printf ("Number of pixels written in file %s: %ld\n\n", filename, nwritten);
fclose(file);
return(1);
}
/* So, to get the x’,y’ position for the circular image we will have to first pass the
* coordinates x,y from the rectangular output image to spherical coordinates using the
* first coordinate system, then those to the second shown spherical coordinate system,
* then those to the polar projection and then pass the polar system to cardinal x’,y’.
*/
double2 evaluatePixel_Front(double2 outPos, double2 srcSize) {
double theta, phi;
double3 sphericCoords;
double phi2_over_pi;
double theta2;
double2 inCentered;
// Convert outcoords to radians (180 = pi, so half a sphere)
theta = (1.0 - outPos.x) * M_PI;
phi = outPos.y * M_PI;
// Convert outcoords to spherical (x,y,z on unisphere)
sphericCoords.x = cos(theta) * sin(phi);
sphericCoords.y = sin(theta) * sin(phi);
sphericCoords.z = cos(phi);
// Convert spherical to input coordinates...
theta2 = atan2(-sphericCoords.z, sphericCoords.x);
phi2_over_pi = acos(sphericCoords.y) / M_PI;
inCentered.x = (phi2_over_pi * cos(theta2) + 0.5) * srcSize.x;
inCentered.y = (phi2_over_pi * sin(theta2) + 0.5) * srcSize.y;
return inCentered;
}
/* So, to get the x’,y’ position for the circular image we will have to first pass the
* coordinates x,y from the rectangular output image to spherical coordinates using the
* first coordinate system, then those to the second shown spherical coordinate system,
* then those to the polar projection and then pass the polar system to cardinal x’,y’.
*/
double2 evaluatePixel_Theta(double2 outPos, double2 srcSize) {
double theta, phi;
double3 sphericCoords;
double phi2_over_pi;
double theta2;
double2 inCentered;
int lens = 0;
if(outPos.x>0.5){
lens++;
}
outPos.x*=2;
// Convert outcoords to radians (180 = pi, so half a sphere)
theta = (1.0 - outPos.x) * M_PI;
phi = outPos.y * M_PI;
// Convert outcoords to spherical (x,y,z on unit sphere)
sphericCoords.z = cos(theta) * sin(phi);
sphericCoords.y = sin(theta+ (double)lens*M_PI) * sin(phi);
sphericCoords.x = -cos(phi+ (double)lens*M_PI);
// Convert spherical to input coordinates...
theta2 = atan2(-sphericCoords.z, sphericCoords.x);
phi2_over_pi = acos(sphericCoords.y) / M_PI;
// phi2_over_pi = sphericCoords.y;
inCentered.x = (phi2_over_pi * cos(theta2) * magicnum + 0.5 + lens) * srcSize.x;
inCentered.y = (phi2_over_pi * sin(theta2) * magicnum + 0.5) * srcSize.y;
return inCentered;
}
/* 1. Define cartesian plane
* 2. Reverse equirectangular projection from cartesian plane to polar coords in sphere
* 3. Stereographic projection of polar coords from sphere to plane
* 4. Convert polar coords to cartesian coords in plane
* 5. Center and stretch according to source size
*/
double2 evaluatePixel_Equirectangular(double2 outPos, double2 srcSize) {
double2 cartesianCoordsPlane;
polar3 polarCoordsSphere;
polar2 polarCoordsPlane;
double2 result;
// Define cartesianCoordsPlane
cartesianCoordsPlane.x = 1.0 - outPos.x;
cartesianCoordsPlane.y = 1.0 - outPos.y;
// Reverse equirectangular projection
// Convert cartesianCoordsPlane to polarCoordsSphere
polarCoordsSphere.theta = cartesianCoordsPlane.x * 2.0 * M_PI;
polarCoordsSphere.phi = cartesianCoordsPlane.y * M_PI/2.0 + M_PI/2.0;
// Stereographic projection
// Convert polarCoordsSphere to polar coordinates on plane
polarCoordsPlane.r = sin(polarCoordsSphere.phi)/(1.0-cos(polarCoordsSphere.phi));
polarCoordsPlane.theta = polarCoordsSphere.theta;
// Convert polarCoordsPlane to cartesian coordinates; center and stretch
result.x = (polarCoordsPlane.r * cos(polarCoordsPlane.theta) + 1.0)/2.0 * srcSize.x;
result.y = (polarCoordsPlane.r * sin(polarCoordsPlane.theta) + 1.0)/2.0 * srcSize.y;
// Coordinates of pixel in input which should be mapped onto given pixel in output
return result;
}
/* Generate maps */
void gen_maps(configuration cfg, int** image_x, int** image_y) {
int x, y;
for (y = 0; y < cfg.rows; y++) {
for (x = 0; x < cfg.cols; x++) {
double2 outPos = {(double)x / (double)cfg.cols,
(double)y / (double)cfg.rows};
double2 srcSize = {cfg.width, cfg.height};
double2 o;
// TODO crop
// Map output pixel (x, y) to corresponding input pixel
switch (cfg.mode) {
case FRONT:
o = evaluatePixel_Front(outPos, srcSize);
break;
case THETAS:
o = evaluatePixel_Theta(outPos, srcSize);
break;
case EQUIRECTANGULAR:
o = evaluatePixel_Equirectangular(outPos, srcSize);
break;
default:
printf("Mode not implemented\n");
exit(1);
}
image_x[y][x] = (int)round(o.x);
image_y[y][x] = (int)round(o.y);
}
}
}
/* Main */
int main (int argc, char **argv) {
int y;
int** image_x;
int** image_y;
configuration cfg = parse_options(argc, argv);
if (cfg.xmap_filename) printf("xmapfile: %s\n", cfg.xmap_filename);
if (cfg.ymap_filename) printf("ymapfile: %s\n", cfg.ymap_filename);
/* Allocate memory for TODO */
image_x = malloc((cfg.rows) * sizeof(*image_x));
for (y = 0 ; y < (cfg.rows); y++) image_x[y] = malloc((cfg.cols) * sizeof(*(image_x[y])));
image_y = malloc((cfg.rows) * sizeof(*image_y));
for (y = 0; y < (cfg.rows); y++) image_y[y]= malloc((cfg.cols) * sizeof(*(image_y[y])));
/* Generate the maps */
printf("Generating maps\n");
gen_maps(cfg, image_x, image_y);
/* Write files */
printf("Writing files\n");
pgmWrite_ASCII(cfg.ymap_filename, cfg.rows, cfg.cols,image_y, cfg.ymap_filename);
pgmWrite_ASCII(cfg.xmap_filename, cfg.rows, cfg.cols,image_x, cfg.xmap_filename);
char* filename = "xy.ppm";
ppmWrite_ASCII(filename, cfg.rows, cfg.cols,image_x,image_y,filename, cfg.width*2);
/* Free memory */
if (image_y) {
for (y = 0; y < cfg.rows; y++) free(image_y[y]);
free(image_y);
}
if (image_x) {
for (y = 0; y < cfg.rows; y++) free(image_x[y]);
free(image_x);
}
/* Exit */
exit (0);
}