-
Notifications
You must be signed in to change notification settings - Fork 34
/
Copy pathutils.py
250 lines (203 loc) · 8.98 KB
/
utils.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
import random
import cv2
import numpy as np
import tifffile as tiff
import earthpy.plot as ep
import matplotlib.pyplot as plt
from skimage import measure
from skimage import filters
def normalize(img):
min = img.min()
max = img.max()
x = 2.0 * (img - min) / (max - min) - 1.0
return x
def get_rand_patch(img, mask, sz=160, channel = None):
"""
:param img: ndarray with shape (x_sz, y_sz, num_channels)
:param mask: binary ndarray with shape (x_sz, y_sz, num_classes)
:param sz: size of random patch
:param Channels 0: Buildings , 1: Roads & Tracks, 2: Trees , 3: Crops, 4: Water
:return: patch with shape (sz, sz, num_channels)
"""
assert len(img.shape) == 3 and img.shape[0] > sz and img.shape[1] > sz and img.shape[0:2] == mask.shape[0:2]
xc = random.randint(0, img.shape[0] - sz)
yc = random.randint(0, img.shape[1] - sz)
patch_img = img[xc:(xc + sz), yc:(yc + sz)]
patch_mask = mask[xc:(xc + sz), yc:(yc + sz)]
# Apply some random transformations
random_transformation = np.random.randint(1,8)
if random_transformation == 1: # reverse first dimension
patch_img = patch_img[::-1,:,:]
patch_mask = patch_mask[::-1,:,:]
elif random_transformation == 2: # reverse second dimension
patch_img = patch_img[:,::-1,:]
patch_mask = patch_mask[:,::-1,:]
elif random_transformation == 3: # transpose(interchange) first and second dimensions
patch_img = patch_img.transpose([1,0,2])
patch_mask = patch_mask.transpose([1,0,2])
elif random_transformation == 4:
patch_img = np.rot90(patch_img, 1)
patch_mask = np.rot90(patch_mask, 1)
elif random_transformation == 5:
patch_img = np.rot90(patch_img, 2)
patch_mask = np.rot90(patch_mask, 2)
elif random_transformation == 6:
patch_img = np.rot90(patch_img, 3)
patch_mask = np.rot90(patch_mask, 3)
else:
pass
if channel=='all':
return patch_img, patch_mask
if channel !='all':
patch_mask = patch_mask[:,:,channel]
return patch_img, patch_mask
def get_patches(x_dict, y_dict, n_patches, sz=160, channel = 'all'):
"""
:param Channels 0: Buildings , 1: Roads & Tracks, 2: Trees , 3: Crops, 4: Water or 'all'
"""
x = list()
y = list()
total_patches = 0
while total_patches < n_patches:
img_id = random.sample(x_dict.keys(), 1)[0]
img = x_dict[img_id]
mask = y_dict[img_id]
img_patch, mask_patch = get_rand_patch(img, mask, sz, channel)
x.append(img_patch)
y.append(mask_patch)
total_patches += 1
print('Generated {} patches'.format(total_patches))
return np.array(x), np.array(y)
def load_data(path = './data/'):
"""
:param path: the path of the dataset which includes mband and gt_mband folders
:return: X_DICT_TRAIN, Y_DICT_TRAIN, X_DICT_VALIDATION, Y_DICT_VALIDATION
"""
trainIds = [str(i).zfill(2) for i in range(1, 25)] # all availiable ids: from "01" to "24"
X_DICT_TRAIN = dict()
Y_DICT_TRAIN = dict()
X_DICT_VALIDATION = dict()
Y_DICT_VALIDATION = dict()
print('Reading images')
for img_id in trainIds:
img_m = normalize(tiff.imread(path + 'mband/{}.tif'.format(img_id)).transpose([1, 2, 0]))
mask = tiff.imread(path + 'gt_mband/{}.tif'.format(img_id)).transpose([1, 2, 0]) / 255
train_xsz = int(3/4 * img_m.shape[0]) # use 75% of image as train and 25% for validation
X_DICT_TRAIN[img_id] = img_m[:train_xsz, :, :]
Y_DICT_TRAIN[img_id] = mask[:train_xsz, :, :]
X_DICT_VALIDATION[img_id] = img_m[train_xsz:, :, :]
Y_DICT_VALIDATION[img_id] = mask[train_xsz:, :, :]
#print(img_id + ' read')
print('Images are read')
return X_DICT_TRAIN, Y_DICT_TRAIN, X_DICT_VALIDATION, Y_DICT_VALIDATION
def plot_train_data(X_DICT_TRAIN, Y_DICT_TRAIN, image_number = 12):
labels =['Orginal Image with the 8 bands', 'Ground Truths: Buildings', 'Ground Truths: Roads & Tracks', 'Ground Truths: Trees' , 'Ground Truths: Crops', 'Ground Truths: Water']
image_number = str(image_number).zfill(2)
number_of_GTbands = Y_DICT_TRAIN[image_number].shape[2]
f, axarr = plt.subplots(1, number_of_GTbands + 1, figsize=(25,25))
band_indices = [0, 1, 2]
print('Image shape is: ',X_DICT_TRAIN[image_number].shape)
print("Ground Truth's shape is: ",Y_DICT_TRAIN[image_number].shape)
ep.plot_rgb(X_DICT_TRAIN[image_number].transpose([2,0,1]),
rgb=band_indices,
title=labels[0],
stretch=True,
ax=axarr[0])
for i in range(0, number_of_GTbands):
axarr[i+1].imshow(Y_DICT_TRAIN[image_number][:,:,i])
#print(labels[i+1])
axarr[i+1].set_title(labels[i+1])
plt.show()
def Abs_sobel_thresh(image,orient='x',thresh=(40,250) ,sobel_kernel=3):
gray=image#cv2.cvtColor(image,cv2.COLOR_RGB2GRAY)
if orient=='x':
#the operator calculates the derivatives of the pixel values along the horizontal direction to make a filter.
sobel=cv2.Sobel(gray,cv2.CV_64F,1,0,ksize= sobel_kernel)
if (orient=='y'):
sobel=cv2.Sobel(gray,cv2.CV_64F,0,1,ksize= sobel_kernel)
abs_sobel=np.absolute(sobel)
scaled_sobel=(255*abs_sobel/np.max(abs_sobel))
grad_binary=np.zeros_like(scaled_sobel)
grad_binary[(scaled_sobel>=thresh[0])&(scaled_sobel<=thresh[1])]=1
return grad_binary
def Mag_thresh(image, sobel_kernel=3, mag_thresh=(0, 255)):
gray=image#cv2.cvtColor(image,cv2.COLOR_RGB2GRAY)
sobelx=cv2.Sobel(gray,cv2.CV_64F,1,0,ksize=sobel_kernel)
sobely=cv2.Sobel(gray,cv2.CV_64F,1,0,ksize=sobel_kernel)
gradmag=np.sqrt(sobelx**2+sobely**2)
scale_factor = np.max(gradmag)/255
gradmag=np.uint8(gradmag/scale_factor )
mag_binary=np.zeros_like(gradmag)
mag_binary[(gradmag>=mag_thresh[0])&(gradmag<=mag_thresh[1])]=1
# Apply threshold
return mag_binary
def Dir_threshold(image, sobel_kernel=3, thresh=(0, np.pi/2)):
gray=image#cv2.cvtColor(image,cv2.COLOR_RGB2GRAY)
sobelx=cv2.Sobel(gray,cv2.CV_64F,1,0,ksize=sobel_kernel)
sobely=cv2.Sobel(gray,cv2.CV_64F,1,0,ksize=sobel_kernel)
abs_sobelx=np.absolute(sobelx)
abs_sobely=np.absolute(sobely)
abs_graddir=np.arctan(abs_sobely,abs_sobelx)
dir_binary=np.zeros_like(abs_graddir)
dir_binary[(abs_graddir>=thresh[0])&(abs_graddir<=thresh[1])]=1
# Calculate gradient direction
# Apply threshold
return dir_binary
def Combined_thresholds(gradx,grady,mag_binary,dir_binary):
combined=np.zeros_like(dir_binary)
combined[(gradx==1)|(grady==1) |(mag_binary==1)|(dir_binary==1)]=1
return combined
def BilateralFilter(image, kernel_size,sigmaSpace,sigmaColor): # bilateral filter can keep edges sharp while removing noises
img=np.copy(image)
img=cv2.bilateralFilter(img,kernel_size,sigmaColor,sigmaSpace)
#plt.imshow(img)
return img
def Erosion(image, filter_size = 2, iteration= 1):
img=np.copy(image)
kernel = np.ones((filter_size,filter_size),np.uint8)
erosion=cv2.erode(img,kernel,iterations=iteration)
return erosion
def Opening(image, filter_size):
#Opening is just another name of erosion followed by dilation
img=np.copy(image)
kernel=cv2.getStructuringElement(cv2.MORPH_ELLIPSE,(filter_size,filter_size))
opening = cv2.morphologyEx(img, cv2.MORPH_OPEN, kernel)
return opening
def Closing(image,k):# closing is useful to detect the overall contour of a figure and opening is suitable to detect subpatterns.
kernel = np.ones((k, k), np.uint8)
img=np.copy(image)
img_close = cv2.morphologyEx(img, op= cv2.MORPH_CLOSE,kernel=kernel)
return img_close
def Denoise(image,k):
img=np.copy(image)
struct=cv2.getStructuringElement(cv2.MORPH_ELLIPSE,(k,k))
img=cv2.morphologyEx(img,cv2.MORPH_OPEN,struct)
return img
def Binary(image, threshold, max_value = 1):
img=np.copy(image)
(t,masklayer)=cv2.threshold(img,threshold,max_value,cv2.THRESH_BINARY)
return masklayer
def Gaussian_filter(image, sigma =1):
img=np.copy(image)
blur = filters.gaussian(img, sigma=sigma)
return blur
def Find_threshold_otsu(image):
t = filters.threshold_otsu(image)
return t
def ExtractObjects(image):
img=np.copy(image)
#kernel=cv2.getStructuringElement(cv2.MORPH_ELLIPSE,(2,2))
#erosion=cv2.erode(img,kernel,iterations=1)
#bliteralfilter=cv2.bilateralFilter(erosion,5,75,75)
#(t,masklayer)=cv2.threshold(bliteralfilter,0,1,cv2.THRESH_BINARY|cv2.THRESH_OTSU)
#denoising = Denoise(img,1)
blob_labels=measure.label(img,background=0)
number_of_objects=np.unique(blob_labels)
return blob_labels,number_of_objects
def post_processing(img):
blur = Gaussian_filter(img, sigma=1)
t = Find_threshold_otsu(blur)
binary_img = Binary(blur,t)
opened_img = Opening(binary_img, filter_size = 3)
blob_labels,number_of_objects = ExtractObjects(opened_img)
return opened_img, number_of_objects, blob_labels