Skip to content

Latest commit

 

History

History
109 lines (86 loc) · 18.9 KB

README.md

File metadata and controls

109 lines (86 loc) · 18.9 KB

High Performance Model Configs

This directory contains high performance model configurations for different generations of TPU and GPU hardware.

These configurations do 3 things:

  • Sets various XLA compiler flags (see below) as LIBTPU_INIT_ARGS to optimize runtime performance.
  • Runs rto_setup.sh to optimize communication protocols for network performance. (This only needs to be run once on each worker)
  • Runs train.py with specific hyper-parameters (batch size, etc.)

Reproduction Instructions

Create a custom MTU network

  1. Create a custom MTU network to optimize network performance and give it firewall rules. If you are unable to complete this step, you may skip it. This step is not necessary, and is only for improving performance when running on a Multislice setup.

    Create a network with an MTU of 8896 bytes and set up firewall rules. (Creating a network requires compute.networks.create permission in your project)

    gcloud compute networks create mtu9k --mtu=8896 --project=${PROJECT} --subnet-mode=auto --bgp-routing-mode=regional
    
    gcloud compute firewall-rules create mtu9kfw --network mtu9k --allow tcp,icmp,udp --project=${PROJECT}
    

    When you create your TPUs, you need to indicate they should be part of this network.

    Here is an example of a queued-resources request on GCE using the --network flag (--network=mtu9k).

    gcloud alpha compute tpus queued-resources create ${QR_ID} --node-prefix=${TPU_NAME} --node-count=${NUM_SLICES} --accelerator_type=${ACCELERATOR_TYPE} --runtime_version=${RUNTIME_VERSION} --network=mtu9k --project=${PROJECT} --zone=${ZONE}
    

    Note: If you want to use only one slice, you need to replace node-prefix with node-id, and remove node-count.

    Here is an example of creating a GKE cluster with XPK using the --network and --subnetwork flags (--network=mtu9k --subnetwork=mtu9k).

    export CLUSTER_ARGUMENTS="--network=mtu9k --subnetwork=mtu9k"
    
    python3 xpk/xpk.py cluster create --cluster ${YOUR_CLUSTER_NAME} --tpu-type ${ACCELERATOR_TYPE} --num-slices ${NUM_SLICES} --custom-cluster-arguments="${CLUSTER_ARGUMENTS}"
    

Run model config scripts on TPUs

  1. You can run these model configs on the GCE platform using multihost_runner.py or multihost_job.py, or on the GKE platform using XPK. Take a look at the getting_started directory for directions on how to set up your TPUs and use these tools.

  2. Here are some example commands to run the model configs:

    Running with multihost_runner.py on GCE:

    python3 multihost_runner.py --TPU_PREFIX=${TPU_PREFIX} --COMMAND="bash setup.sh && bash MaxText/configs/v5p/128b.sh RUN_NAME=${YOUR_RUN_NAME} OUTPUT_PATH=${MAXTEXT_OUTPUT_PATH} DATASET_PATH=${MAXTEXT_DATASET_PATH} PLATFORM=gce"
    

    Running with multihost_job.py on GCE:

    python3 multihost_job.py --NUM_SLICES=${NUM_SLICES} --TPU_TYPE=${ACCELERATOR_TYPE} --VERSION=${RUNTIME_VERSION} --RUN_NAME=${RUN_NAME} --BUCKET_NAME=${GCS_BUCKET_NAME} --COMMAND="bash setup.sh && bash MaxText/configs/v5p/128b.sh RUN_NAME=${YOUR_RUN_NAME} OUTPUT_PATH=${MAXTEXT_OUTPUT_PATH} DATASET_PATH=${MAXTEXT_DATASET_PATH} PLATFORM=gce"
    
    # Add --CQR_EXTRA_ARGS="--network=mtu9k" to the command if you would like to use the custom MTU network.
    

    Running with XPK on GKE:

    xpk workload create --cluster ${YOUR_CLUSTER_NAME} --docker-image gcr.io/${PROJECT}/${YOUR_IMAGE_NAME} --workload ${YOUR_RUN_NAME} --tpu-type=${ACCELERATOR_TYPE} --num-slices=${NUM_SLICES} --command "bash MaxText/configs/v5p/128b.sh OUTPUT_PATH=${MAXTEXT_OUTPUT_PATH} DATASET_PATH=${MAXTEXT_DATASET_PATH} PLATFORM=gke"
    

    Note: When running these scripts, be sure to specify the PLATFORM flag with the correct platform you are running on "gce" or "gke".

XLA flags used by MaxText

Here are some of the most common XLA compiler flags used by MaxText.

Flag Type Notes
xla_tpu_enable_data_parallel_all_reduce_opt Boolean (true/false) Optimization to increase overlap opportunities for DCN (data center networking) all-reduces used for data parallel sharding.
Usage: v5p/32B v5p/64B v5p/128B v5p/256B v5p/512B v5p/1024B v5e/16B v5e/32B v5e/64B v5e/128B v5e/Llama2-7B v5e/Llama2-13B v5e/Llama2-70B v5e/GPT3-175B
xla_tpu_data_parallel_opt_different_sized_ops Boolean (true/false) Enables pipelining of data parallel ops across multiple iterations even if their output sizes doesn't match what can Be saved in place in the stacked variables. Can increase memory pressure.
Usage: v5p/32B v5p/64B v5p/128B v5p/256B v5p/512B v5p/1024B v5e/16B v5e/32B v5e/64B v5e/128B v5e/Llama2-7B v5e/Llama2-13B v5e/Llama2-70B v5e/GPT3-175B
xla_tpu_enable_async_collective_fusion Boolean (true/false) Enables the pass which fuses async collective communications with compute ops (output/loop-fusion or convolution) that are scheduled between their -start and -done instructions.
Usage: v5p/32B v5p/64B v5p/128B v5p/256B v5p/512B v5p/1024B v5e/16B v5e/32B v5e/64B v5e/128B v5e/Llama2-7B v5e/Llama2-13B v5e/Llama2-70B v5e/GPT3-175B
xla_tpu_enable_async_collective_fusion_fuse_all_gather TristateFlag (true/false/kAuto) Enables fusing all-gathers within the AsyncCollectiveFusion pass.
If set to kAuto, it will be enabled based on the target."
Usage: v5p/32B v5p/64B v5p/128B v5p/256B v5p/512B v5p/1024B v5e/16B v5e/32B v5e/64B v5e/128B v5e/Llama2-7B v5e/Llama2-13B v5e/Llama2-70B v5e/GPT3-175B
xla_tpu_enable_async_collective_fusion_multiple_steps Boolean (true/false) Enables continuing the same async collective in multiple steps (fusions) in the AsyncCollectiveFusion pass.
Usage: v5p/32B v5p/64B v5p/128B v5p/256B v5p/512B v5p/1024B v5e/16B v5e/32B v5e/64B v5e/128B v5e/Llama2-7B v5e/Llama2-13B v5e/Llama2-70B v5e/GPT3-175B
xla_tpu_overlap_compute_collective_tc Boolean (true/false) Enables the overlap of compute and communication on a single TensorCore, i.e., one core equivalent of MegaCore fusion.
Usage: v5p/32B v5p/64B v5p/128B v5p/256B v5p/512B v5p/1024B v5e/16B v5e/32B v5e/64B v5e/128B v5e/Llama2-7B v5e/Llama2-13B v5e/Llama2-70B v5e/GPT3-175B
xla_enable_async_all_gather TristateFlag (true/false/kAuto) If set to true, enables async all gather. If kAuto, enables only for platforms that implement async all-gather. The implementation (such as BC-offload or continuation fusion) is chosen based on other flag values.
Usage: v4/22B v4/52B v5p/32B v5p/64B v5p/128B v5p/256B v5p/512B v5p/1024B v5e/16B v5e/32B v5e/64B v5e/128B v5e/Llama2-7B v5e/Llama2-13B v5e/Llama2-70B v5e/GPT3-175B
xla_tpu_spmd_rng_bit_generator_unsafe Boolean (true/false) Whether to run RngBitGenerator HLO in a partitioned way, which is unsafe if deterministic results are expected with different shardings on different parts of the computation.
Usage: v5e/GPT3-175B
xla_tpu_megacore_fusion_allow_ags Boolean (true/false) Allows fusing all-gathers with convolutions/all-reduces.
Usage: v5p/32B v5p/64B v5p/128B v5p/256B v5p/512B v5p/1024B
xla_tpu_enable_ag_backward_pipelining Boolean (true/false) Pipelines all-gathers (currently megascale all-gathers) backwards through scan loops.
Usage: v5p/32B v5p/64B v5p/128B v5p/256B v5p/512B v5p/1024B
xla_enable_async_collective_permute TristateFlag (true/false/kAuto) Rewrites all collective-permute operations to their asynchronous variants. When set to kAuto, XLA can turn on async collective based on other configurations or conditions automatically.
Usage: v5p/32B v5p/64B v5p/128B v5p/256B v5p/512B v5p/1024B
xla_dump_to String (filepath) The folder where pre-optimization HLO files and other artifacts will be placed (see XLA Tools).
Usage: a3/Llama2-7B 1vm a3/Llama2-7B 2vm a3/Llama2-7B 4vm a3/Llama2-7B 8vm a3/Llama2-7B 16vm
xla_gpu_enable_latency_hiding_scheduler Boolean (true/false) This flag enables latency hiding schedulers to overlap asynchronous communication with computation efficiently. The default value is False.
Usage: a3/Llama2-7B 1vm a3/Llama2-7B 2vm a3/Llama2-7B 4vm a3/Llama2-7B 8vm a3/Llama2-7B 16vm
xla_gpu_enable_triton_gemm Boolean (true/false) Use Triton-based matrix multiplication.
Usage: a3/Llama2-7B 1vm a3/Llama2-7B 2vm a3/Llama2-7B 4vm a3/Llama2-7B 8vm a3/Llama2-7B 16vm
xla_gpu_graph_level Flag (0-3) The legacy flag for setting GPU graph level. Use xla_gpu_enable_command_buffer in new use cases. 0 = off; 1 = capture fusions and memcpys; 2 = capture gemms; 3 = capture convolutions.
Usage: a3/Llama2-7B 1vm a3/Llama2-7B 2vm a3/Llama2-7B 4vm a3/Llama2-7B 8vm a3/Llama2-7B 16vm
xla_gpu_all_reduce_combine_threshold_bytes Integer (bytes) These flags tune when to combine multiple small AllGather / ReduceScatter / AllReduce into one big AllGather / ReduceScatter / AllReduce to reduce time spent on cross-device communication. For example, for the AllGather / ReduceScatter thresholds on a Transformer-based workload, consider tuning them high enough so as to combine at least a Transformer Layer’s weight AllGather / ReduceScatter. By default, the combine_threshold_bytes is set to 256.
Usage: a3/Llama2-7B 1vm a3/Llama2-7B 2vm a3/Llama2-7B 4vm a3/Llama2-7B 8vm a3/Llama2-7B 16vm
xla_gpu_all_gather_combine_threshold_bytes Integer (bytes) See xla_gpu_all_reduce_combine_threshold_bytes above.
Usage: a3/Llama2-7B 1vm a3/Llama2-7B 2vm a3/Llama2-7B 4vm a3/Llama2-7B 8vm a3/Llama2-7B 16vm
xla_gpu_reduce_scatter_combine_threshold_bytes Integer (bytes) See xla_gpu_all_reduce_combine_threshold_bytes above.
Usage: a3/Llama2-7B 1vm a3/Llama2-7B 2vm a3/Llama2-7B 4vm a3/Llama2-7B 8vm a3/Llama2-7B 16vm
xla_gpu_enable_pipelined_all_gather Boolean (true/false) Enable pipelinling of all-gather instructions.
Usage: a3/Llama2-7B 1vm a3/Llama2-7B 2vm a3/Llama2-7B 4vm a3/Llama2-7B 8vm a3/Llama2-7B 16vm
xla_gpu_enable_pipelined_reduce_scatter Boolean (true/false) Enable pipelinling of reduce-scatter instructions.
Usage: a3/Llama2-7B 1vm a3/Llama2-7B 2vm a3/Llama2-7B 4vm a3/Llama2-7B 8vm a3/Llama2-7B 16vm
xla_gpu_enable_pipelined_all_reduce Boolean (true/false) Enable pipelinling of all-reduce instructions.
Usage: a3/Llama2-7B 1vm a3/Llama2-7B 2vm a3/Llama2-7B 4vm a3/Llama2-7B 8vm a3/Llama2-7B 16vm
xla_gpu_enable_while_loop_double_buffering Boolean (true/false) Enable double-buffering for while loop.
Usage: a3/Llama2-7B 1vm a3/Llama2-7B 2vm a3/Llama2-7B 4vm a3/Llama2-7B 8vm a3/Llama2-7B 16vm
xla_gpu_enable_all_gather_combine_by_dim Boolean (true/false) Combine all-gather ops with the same gather dimension or irrespective of their dimension.
Usage: a3/Llama2-7B 1vm a3/Llama2-7B 2vm a3/Llama2-7B 4vm a3/Llama2-7B 8vm a3/Llama2-7B 16vm
xla_gpu_enable_reduce_scatter_combine_by_dim Boolean (true/false) Combine reduce-scatter ops with the same dimension or irrespective of their dimension.
Usage: a3/Llama2-7B 1vm a3/Llama2-7B 2vm a3/Llama2-7B 4vm a3/Llama2-7B 8vm a3/Llama2-7B 16vm
xla_disable_hlo_passes String (comma-separated list of pass names) Comma-separated list of HLO passes to be disabled. These names must exactly match the pass name (no whitespace around commas).
Usage: a3/Llama2-7B 1vm a3/Llama2-7B 2vm a3/Llama2-7B 4vm a3/Llama2-7B 8vm a3/Llama2-7B 16vm