-
Notifications
You must be signed in to change notification settings - Fork 11
/
Copy pathtrain.py
204 lines (177 loc) · 6.91 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
import os
import argparse
import json
import numpy as np
import tensorflow as tf
import model.data as data
import model.model as m
import model.evaluate as e
seed = 42
np.random.seed(seed)
tf.set_random_seed(seed)
def update(model, x, opt, loss, params, session):
z = np.random.normal(0, 1, (params.batch_size, params.z_dim))
mask = np.ones((params.batch_size, params.vocab_size)) * np.random.choice(
2,
params.vocab_size,
p=[params.noise, 1.0 - params.noise]
)
loss, _ = session.run([loss, opt], feed_dict={
model.x: x,
model.z: z,
model.mask: mask
})
return loss
def train(model, dataset, params):
log_dir = os.path.join(params.model, 'logs')
model_dir = os.path.join(params.model, 'model')
with tf.Session(config=tf.ConfigProto(
inter_op_parallelism_threads=params.num_cores,
intra_op_parallelism_threads=params.num_cores,
gpu_options=tf.GPUOptions(allow_growth=True)
)) as session:
avg_d_loss = tf.placeholder(tf.float32, [], 'd_loss_ph')
tf.summary.scalar('d_loss', avg_d_loss)
avg_g_loss = tf.placeholder(tf.float32, [], 'g_loss_ph')
tf.summary.scalar('g_loss', avg_g_loss)
validation = tf.placeholder(tf.float32, [], 'validation_ph')
tf.summary.scalar('validation', validation)
summary_writer = tf.summary.FileWriter(log_dir, session.graph)
summaries = tf.summary.merge_all()
saver = tf.train.Saver(tf.global_variables())
tf.local_variables_initializer().run()
tf.global_variables_initializer().run()
d_losses = []
g_losses = []
# This currently streams from disk. You set num_epochs=1 and
# wrap this call with something like itertools.cycle to keep
# this data in memory.
training_data = dataset.batches('training', params.batch_size)
best_val = 0.0
training_labels = np.array(
[[y] for y, _ in dataset.rows('training', num_epochs=1)]
)
validation_labels = np.array(
[[y] for y, _ in dataset.rows('validation', num_epochs=1)]
)
for step in range(params.num_steps + 1):
_, x = next(training_data)
# update discriminator
d_losses.append(update(
model,
x,
model.d_opt,
model.d_loss,
params,
session
))
# update generator
g_losses.append(update(
model,
x,
model.g_opt,
model.g_loss,
params,
session
))
if step % params.log_every == 0:
print('{}: {:.6f}\t{:.6f}'.format(
step,
d_losses[-1],
g_losses[-1]
))
if step and (step % params.save_every) == 0:
validation_vectors = m.vectors(
model,
dataset.batches(
'validation',
params.batch_size,
num_epochs=1
),
session
)
training_vectors = m.vectors(
model,
dataset.batches(
'training',
params.batch_size,
num_epochs=1
),
session
)
val = e.evaluate(
training_vectors,
validation_vectors,
training_labels,
validation_labels
)[0]
print('validation: {:.3f} (best: {:.3f})'.format(
val,
best_val or 0.0
))
if val > best_val:
best_val = val
print('saving: {}'.format(model_dir))
saver.save(session, model_dir, global_step=step)
summary, = session.run([summaries], feed_dict={
model.x: x,
model.z: np.random.normal(
0,
1,
(params.batch_size, params.z_dim)
),
model.mask: np.ones_like(x),
validation: val,
avg_d_loss: np.average(d_losses),
avg_g_loss: np.average(g_losses)
})
summary_writer.add_summary(summary, step)
summary_writer.flush()
d_losses = []
g_losses = []
def main(args):
if not os.path.exists(args.model):
os.mkdir(args.model)
with open(os.path.join(args.model, 'params.json'), 'w') as f:
f.write(json.dumps(vars(args)))
dataset = data.Dataset(args.dataset)
x = tf.placeholder(tf.float32, shape=(None, args.vocab_size), name='x')
z = tf.placeholder(tf.float32, shape=(None, args.z_dim), name='z')
mask = tf.placeholder(
tf.float32,
shape=(None, args.vocab_size),
name='mask'
)
model = m.ADM(x, z, mask, args)
train(model, dataset, args)
def parse_args():
parser = argparse.ArgumentParser()
parser.add_argument('--model', type=str, required=True,
help='path to model output directory')
parser.add_argument('--dataset', type=str, required=True,
help='path to the input dataset')
parser.add_argument('--vocab-size', type=int, default=2000,
help='the vocab size')
parser.add_argument('--g-dim', type=int, default=300,
help='size of generator hidden dimension')
parser.add_argument('--z-dim', type=int, default=50,
help='size of the document encoding')
parser.add_argument('--noise', type=float, default=0.4,
help='masking noise percentage')
parser.add_argument('--learning-rate', type=float, default=0.0001,
help='initial learning rate')
parser.add_argument('--num-steps', type=int, default=150000,
help='the number of steps to train for')
parser.add_argument('--batch-size', type=int, default=64,
help='the batch size')
parser.add_argument('--num-cores', type=int, default=2,
help='the number of CPU cores to use')
parser.add_argument('--log-every', type=int, default=100,
help='print loss after this many steps')
parser.add_argument('--save-every', type=int, default=500,
help='print loss after this many steps')
parser.add_argument('--validate-every', type=int, default=2000,
help='do validation after this many steps')
return parser.parse_args()
if __name__ == '__main__':
main(parse_args())