-
Notifications
You must be signed in to change notification settings - Fork 6
/
Copy pathrun.py
269 lines (236 loc) · 10.2 KB
/
run.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
import random
from argparse import ArgumentParser, ArgumentDefaultsHelpFormatter
from time import strftime, time
import cv2
import gym
import numpy as np
import psutil
import tensorflow as tf
import tensorflow.contrib.keras as keras
from tqdm import tqdm
from loggers import TensorBoardLogger
from replay_buffer import ReplayBuffer
DISCOUNT_FACTOR_GAMMA = 0.99
LEARNING_RATE = 0.001
BATCH_SIZE = 64
TARGET_UPDATE_EVERY = 1000
TRAIN_START = 2000
REPLAY_BUFFER_SIZE = 50000
MAX_STEPS = 200000
LOG_EVERY = 2000
SNAPSHOT_EVERY = 50000
EVAL_EVERY = 20000
EVAL_STEPS = 10000
EVAL_EPSILON = 0
TRAIN_EPSILON = 0.01
Q_VALIDATION_SIZE = 10000
def one_hot_encode(n, action):
one_hot = np.zeros(n)
one_hot[int(action)] = 1
return one_hot
def predict(env, model, observations):
action_mask = np.ones((len(observations), env.action_space.n))
return model.predict(x=[observations, action_mask])
def fit_batch(env, model, target_model, batch):
observations, actions, rewards, next_observations, dones = batch
# Predict the Q values of the next states. Passing ones as the action mask.
next_q_values = predict(env, target_model, next_observations)
# The Q values of terminal states is 0 by definition.
next_q_values[dones] = 0.0
# The Q values of each start state is the reward + gamma * the max next state Q value
q_values = rewards + DISCOUNT_FACTOR_GAMMA * np.max(next_q_values, axis=1)
one_hot_actions = np.array([one_hot_encode(env.action_space.n, action) for action in actions])
history = model.fit(
x=[observations, one_hot_actions],
y=one_hot_actions * q_values[:, None],
batch_size=BATCH_SIZE,
verbose=0,
)
return history.history['loss'][0]
def create_model(env):
n_actions = env.action_space.n
obs_shape = env.observation_space.shape
observations_input = keras.layers.Input(obs_shape, name='observations_input')
action_mask = keras.layers.Input((n_actions,), name='action_mask')
hidden = keras.layers.Dense(32, activation='relu')(observations_input)
hidden_2 = keras.layers.Dense(32, activation='relu')(hidden)
output = keras.layers.Dense(n_actions)(hidden_2)
filtered_output = keras.layers.multiply([output, action_mask])
model = keras.models.Model([observations_input, action_mask], filtered_output)
optimizer = keras.optimizers.Adam(lr=LEARNING_RATE, clipnorm=1.0)
model.compile(optimizer, loss='mean_squared_error')
return model
def greedy_action(env, model, observation):
next_q_values = predict(env, model, observations=[observation])
return np.argmax(next_q_values)
def epsilon_greedy_action(env, model, observation, epsilon):
if random.random() < epsilon:
action = env.action_space.sample()
else:
action = greedy_action(env, model, observation)
return action
def save_model(model, step, logdir, name):
filename = '{}/{}-{}.h5'.format(logdir, name, step)
model.save(filename)
print('Saved {}'.format(filename))
return filename
def save_image(env, episode, step):
frame = env.render(mode='rgb_array')
frame = cv2.cvtColor(frame, cv2.COLOR_RGB2BGR) # following cv2.imwrite assumes BGR
filename = "{}_{:06d}.png".format(episode, step)
cv2.imwrite(filename, frame, params=[cv2.IMWRITE_PNG_COMPRESSION, 9])
def evaluate(env, model, view=False, images=False):
print("Evaluation")
done = True
episode = 0
episode_return_sum = 0.0
for step in tqdm(range(1, EVAL_STEPS + 1)):
if done:
if episode > 0:
episode_return_sum += episode_return
obs = env.reset()
episode += 1
episode_return = 0.0
episode_steps = 0
if view:
env.render()
if images:
save_image(env, episode, step)
else:
obs = next_obs
action = epsilon_greedy_action(env, model, obs, epsilon=EVAL_EPSILON)
next_obs, reward, done, _ = env.step(action)
episode_return += reward
episode_steps += 1
if view:
env.render()
if images:
save_image(env, episode, step)
assert episode > 0
episode_return_avg = episode_return_sum / episode
return episode_return_avg
def train(env, model, max_steps, name, logdir, logger):
target_model = create_model(env)
replay = ReplayBuffer(REPLAY_BUFFER_SIZE)
done = True
episode = 0
steps_after_logging = 0
loss = 0.0
for step in range(1, max_steps + 1):
try:
if step % SNAPSHOT_EVERY == 0:
save_model(model, step, logdir, name)
if done:
if episode > 0:
if steps_after_logging >= LOG_EVERY:
steps_after_logging = 0
episode_end = time()
episode_seconds = episode_end - episode_start
episode_steps = step - episode_start_step
steps_per_second = episode_steps / episode_seconds
memory = psutil.virtual_memory()
to_gb = lambda in_bytes: in_bytes / 1024 / 1024 / 1024
print(
"episode {} "
"steps {}/{} "
"loss {:.7f} "
"return {} "
"in {:.2f}s "
"{:.1f} steps/s "
"{:.1f}/{:.1f} GB RAM".format(
episode,
episode_steps,
step,
loss,
episode_return,
episode_seconds,
steps_per_second,
to_gb(memory.used),
to_gb(memory.total),
))
logger.log_scalar('episode_return', episode_return, step)
logger.log_scalar('episode_steps', episode_steps, step)
logger.log_scalar('episode_seconds', episode_seconds, step)
logger.log_scalar('steps_per_second', steps_per_second, step)
logger.log_scalar('memory_used', to_gb(memory.used), step)
logger.log_scalar('loss', loss, step)
episode_start = time()
episode_start_step = step
obs = env.reset()
episode += 1
episode_return = 0.0
else:
obs = next_obs
action = epsilon_greedy_action(env, model, obs, epsilon=TRAIN_EPSILON)
next_obs, reward, done, _ = env.step(action)
episode_return += reward
replay.add(obs, action, reward, next_obs, done)
if step >= TRAIN_START:
if step % TARGET_UPDATE_EVERY == 0:
target_model.set_weights(model.get_weights())
batch = replay.sample(BATCH_SIZE)
loss = fit_batch(env, model, target_model, batch)
if step == Q_VALIDATION_SIZE:
q_validation_observations, _, _, _, _ = replay.sample(Q_VALIDATION_SIZE)
if step >= TRAIN_START and step % EVAL_EVERY == 0:
episode_return_avg = evaluate(env, model)
q_values = predict(env, model, q_validation_observations)
max_q_values = np.max(q_values, axis=1)
avg_max_q_value = np.mean(max_q_values)
print(
"episode {} "
"step {} "
"episode_return_avg {:.3f} "
"avg_max_q_value {:.3f}".format(
episode,
step,
episode_return_avg,
avg_max_q_value,
))
logger.log_scalar('episode_return_avg', episode_return_avg, step)
logger.log_scalar('avg_max_q_value', avg_max_q_value, step)
steps_after_logging += 1
except KeyboardInterrupt:
save_model(model, step, logdir, name)
break
def load_or_create_model(env, model_filename):
if model_filename:
model = keras.models.load_model(model_filename)
print('Loaded {}'.format(model_filename))
else:
model = create_model(env)
model.summary()
return model
def set_seed(env, seed):
random.seed(seed)
np.random.seed(seed)
tf.set_random_seed(seed)
env.seed(seed)
def main(args):
assert BATCH_SIZE <= TRAIN_START <= Q_VALIDATION_SIZE <= REPLAY_BUFFER_SIZE
print('args', args)
env = gym.make('MountainCar-v0')
set_seed(env, args.seed)
model = load_or_create_model(env, args.model)
if args.view or args.eval or args.images:
episode_return_avg = evaluate(env, model, args.view, args.images)
print("episode_return_avg {:.3f}".format(episode_return_avg))
else:
max_steps = 100 if args.test else MAX_STEPS
logdir = '{}-log'.format(args.name)
logger = TensorBoardLogger(logdir)
print('Created {}'.format(logdir))
train(env, model, max_steps, args.name, logdir, logger)
if args.test:
filename = save_model(model, EVAL_STEPS, logdir='.', name='test')
load_or_create_model(env, filename)
if __name__ == '__main__':
parser = ArgumentParser(formatter_class=ArgumentDefaultsHelpFormatter)
parser.add_argument('--eval', action='store_true', default=False, help='run evaluation with log only')
parser.add_argument('--images', action='store_true', default=False, help='save images during evaluation')
parser.add_argument('--model', action='store', default=None, help='model filename to load')
parser.add_argument('--name', action='store', default=strftime("%m-%d-%H-%M"), help='name for saved files')
parser.add_argument('--seed', action='store', type=int, help='pseudo random number generator seed')
parser.add_argument('--test', action='store_true', default=False, help='run tests')
parser.add_argument('--view', action='store_true', default=False, help='view the model playing the game')
main(parser.parse_args())