title |
---|
Data Wrangling 2 |
Presentation{target="_blank"}
R Script{target="_blank"} Download this file and open it (or copy-paste into a new script) with RStudio so you can follow along.
library(tidyverse)
library(nycflights13)
left_join(a, b, by = "x1")
Join matching rows from b to a.right_join(a, b, by = "x1")
Join matching rows from a to b.inner_join(a, b, by = "x1")
Retain only rows in both sets.full_join(a, b, by = "x1")
Join data. Retain all values, all rows.
left_join(a, b, by = "x1")
Join matching rows from b to a.
right_join(a, b, by = "x1")
Join matching rows from a to b.
inner_join(a, b, by = "x1")
Retain only rows in both sets.
full_join(a, b, by = "x1")
Join data. Retain all values, all rows.
flights%>%
select(-year,-month,-day,-hour,-minute,-dep_time,-dep_delay)%>%
glimpse()
## Observations: 336,776
## Variables: 12
## $ sched_dep_time <int> 515, 529, 540, 545, 600, 558, 600, 600, 600, 60...
## $ arr_time <int> 830, 850, 923, 1004, 812, 740, 913, 709, 838, 7...
## $ sched_arr_time <int> 819, 830, 850, 1022, 837, 728, 854, 723, 846, 7...
## $ arr_delay <dbl> 11, 20, 33, -18, -25, 12, 19, -14, -8, 8, -2, -...
## $ carrier <chr> "UA", "UA", "AA", "B6", "DL", "UA", "B6", "EV",...
## $ flight <int> 1545, 1714, 1141, 725, 461, 1696, 507, 5708, 79...
## $ tailnum <chr> "N14228", "N24211", "N619AA", "N804JB", "N668DN...
## $ origin <chr> "EWR", "LGA", "JFK", "JFK", "LGA", "EWR", "EWR"...
## $ dest <chr> "IAH", "IAH", "MIA", "BQN", "ATL", "ORD", "FLL"...
## $ air_time <dbl> 227, 227, 160, 183, 116, 150, 158, 53, 140, 138...
## $ distance <dbl> 1400, 1416, 1089, 1576, 762, 719, 1065, 229, 94...
## $ time_hour <dttm> 2013-01-01 05:00:00, 2013-01-01 05:00:00, 2013...
Let's look at the airports
data table (?airports
for documentation):
glimpse(airports)
## Observations: 1,458
## Variables: 8
## $ faa <chr> "04G", "06A", "06C", "06N", "09J", "0A9", "0G6", "0G7", ...
## $ name <chr> "Lansdowne Airport", "Moton Field Municipal Airport", "S...
## $ lat <dbl> 41.13047, 32.46057, 41.98934, 41.43191, 31.07447, 36.371...
## $ lon <dbl> -80.61958, -85.68003, -88.10124, -74.39156, -81.42778, -...
## $ alt <int> 1044, 264, 801, 523, 11, 1593, 730, 492, 1000, 108, 409,...
## $ tz <dbl> -5, -6, -6, -5, -5, -5, -5, -5, -5, -8, -5, -6, -5, -5, ...
## $ dst <chr> "A", "A", "A", "A", "A", "A", "A", "A", "U", "A", "A", "...
## $ tzone <chr> "America/New_York", "America/Chicago", "America/Chicago"...
Now complete the task here by yourself or in small groups.
If you made it through the material above, here's an example of some more 'advanced' coding to extract the geographic locations for all flights and plotting the connections as 'great circles' on a map. This is just meant as an example to illustrate how one might use these functions to perform a more advanced analysis and spatial visualization.
library(geosphere)
library(rgdal)
library(maps)
library(ggplot2)
library(sp)
library(rgeos)
data=
select(airports,
dest=faa,
destName=name,
destLat=lat,
destLon=lon)%>%
right_join(flights)%>%
group_by(dest,
destLon,
destLat,
distance)%>%
summarise(count=n())%>%
ungroup()%>%
select(destLon,
destLat,
count,
distance)%>%
mutate(id=row_number())%>%
na.omit()
## Joining, by = "dest"
NYCll=airports%>%filter(faa=="JFK")%>%select(lon,lat) # get NYC coordinates
# calculate great circle routes
rts <- gcIntermediate(as.matrix(NYCll),
as.matrix(select(data,destLon,destLat)),
1000,
addStartEnd=TRUE,
sp=TRUE)
rts.ff <- fortify(
as(rts,"SpatialLinesDataFrame")) # convert into something ggplot can plot
## join with count of flights
rts.ff$id=as.integer(rts.ff$id)
gcircles <- left_join(rts.ff,
data,
by="id") # join attributes, we keep them all, just in case
Now build a basemap using data in the maps
package.
base = ggplot()
worldmap <- map_data("world",
ylim = c(10, 70),
xlim = c(-160, -80))
wrld <- c(geom_polygon(
aes(long, lat, group = group),
size = 0.1,
colour = "grey",
fill = "grey",
alpha = 1,
data = worldmap
))
Now draw the map using ggplot
base + wrld +
geom_path(
data = gcircles,
aes(
long,
lat,
col = count,
group = group,
),
alpha = 0.5,
lineend = "round",
lwd = 1
) +
coord_equal() +
scale_colour_gradientn(colours = c("blue", "orange", "red"),
guide = "colourbar") +
theme(panel.background = element_rect(fill = 'white', colour = 'white')) +
labs(y = "Latitude", x = "Longitude",
title = "Count of Flights from New York in 2013")
This exercise based on code from here.