forked from KhronosGroup/SPIRV-LLVM-Translator
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathSPIRVTypeScavenger.cpp
589 lines (534 loc) · 22.3 KB
/
SPIRVTypeScavenger.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
//===- SPIRVTypeScavenger.cpp - Recover pointer types in opaque pointer IR ===//
//
// The LLVM/SPIR-V Translator
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
// Copyright (c) 2022 The Khronos Group Inc.
//
// Permission is hereby granted, free of charge, to any person obtaining a
// copy of this software and associated documentation files (the "Software"),
// to deal with the Software without restriction, including without limitation
// the rights to use, copy, modify, merge, publish, distribute, sublicense,
// and/or sell copies of the Software, and to permit persons to whom the
// Software is furnished to do so, subject to the following conditions:
//
// Redistributions of source code must retain the above copyright notice,
// this list of conditions and the following disclaimers.
// Redistributions in binary form must reproduce the above copyright notice,
// this list of conditions and the following disclaimers in the documentation
// and/or other materials provided with the distribution.
// Neither the names of The Khronos Group, nor the names of its
// contributors may be used to endorse or promote products derived from this
// Software without specific prior written permission.
// THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
// IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
// FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
// CONTRIBUTORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
// LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
// OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS WITH
// THE SOFTWARE.
//
//===----------------------------------------------------------------------===//
//
// This file implements the necessary logic to recover pointer types from LLVM
// IR for the output SPIR-V file after LLVM IR completes its transition to
// opaque pointers.
//
//===----------------------------------------------------------------------===//
#include "SPIRVTypeScavenger.h"
#include "SPIRVInternal.h"
#include "llvm/IR/IRBuilder.h"
#include "llvm/IR/InstVisitor.h"
#include "llvm/IR/Instructions.h"
#include "llvm/IR/IntrinsicInst.h"
#include "llvm/IR/NoFolder.h"
#include "llvm/IR/Operator.h"
#define DEBUG_TYPE "type-scavenger"
using namespace llvm;
void SPIRVTypeScavenger::typeModule(Module &M) {
// If typed pointers are in effect, we need to do nothing here.
if (M.getContext().supportsTypedPointers())
return;
// Try to fill in any known types for function parameters.
for (auto &F : M.functions()) {
deduceFunctionType(F);
}
// Collect types for all pertinent values in the module.
for (auto &F : M.functions()) {
for (Argument &Arg : F.args())
if (Arg.getType()->isPointerTy())
computePointerElementType(&Arg);
for (BasicBlock &BB : F) {
for (Instruction &I : BB) {
if (I.getType()->isPointerTy())
computePointerElementType(&I);
correctUseTypes(I);
}
}
}
// Go through all of the types we have collected, and if any are still
// deferred, assign them a fallback i8* type.
Type *Int8Ty = Type::getInt8Ty(M.getContext());
for (const auto &Pair : DeducedTypes) {
if (auto *Untyped = dyn_cast<DeferredType *>(Pair.second)) {
LLVM_DEBUG(dbgs() << "No inferrable type for " << *Pair.first << "\n");
fixType(*Untyped, Int8Ty);
DeducedTypes[Pair.first] = Int8Ty;
}
}
return;
}
static Type *getPointerUseType(Function *F, Op Opcode, unsigned ArgNo) {
switch (Opcode) {
case OpAtomicLoad:
case OpAtomicExchange:
case OpAtomicCompareExchange:
case OpAtomicIAdd:
case OpAtomicISub:
case OpAtomicFAddEXT:
case OpAtomicSMin:
case OpAtomicUMin:
case OpAtomicFMinEXT:
case OpAtomicSMax:
case OpAtomicUMax:
case OpAtomicFMaxEXT:
case OpAtomicAnd:
case OpAtomicOr:
case OpAtomicXor:
if (ArgNo == 0)
return F->getReturnType();
return nullptr;
case OpAtomicStore:
if (ArgNo == 0)
return F->getArg(3)->getType();
return nullptr;
default:
return nullptr;
}
}
void SPIRVTypeScavenger::deduceIntrinsicTypes(Function &F, Intrinsic::ID Id) {
static constexpr unsigned Return = ~0U;
auto AddParameter = [&](unsigned ArgNo, DeducedType Ty) {
if (ArgNo == Return) {
// TODO: Handle return types properly.
} else {
Argument *Arg = F.getArg(ArgNo);
LLVM_DEBUG(dbgs() << "Parameter " << *Arg << " of " << F.getName()
<< " has type " << Ty << "\n");
DeducedTypes[Arg] = Ty;
}
};
LLVMContext &Ctx = F.getContext();
switch (Id) {
case Intrinsic::memcpy:
// First parameter is a pointer, but it may be any pointer type.
return;
case Intrinsic::lifetime_start:
case Intrinsic::lifetime_end:
case Intrinsic::invariant_start:
case Intrinsic::invariant_end:
AddParameter(1, Type::getInt8Ty(Ctx));
return;
// Second and third parameters are strings, which mean nothing.
case Intrinsic::annotation:
return;
case Intrinsic::var_annotation:
case Intrinsic::ptr_annotation:
AddParameter(0, Type::getInt8Ty(Ctx));
// Second and third parameters are strings, so they can be any type.
return;
case Intrinsic::stacksave:
AddParameter(Return, Type::getInt8Ty(Ctx));
return;
case Intrinsic::stackrestore:
AddParameter(0, Type::getInt8Ty(Ctx));
return;
// llvm.instrprof.* intrinsics are not supported
case Intrinsic::instrprof_cover:
case Intrinsic::instrprof_increment:
case Intrinsic::instrprof_increment_step:
case Intrinsic::instrprof_value_profile:
AddParameter(0, Type::getInt8Ty(Ctx));
return;
}
}
static Type *getParamType(const AttributeList &AL, unsigned ArgNo) {
if (Type *Ty = AL.getParamByValType(ArgNo))
return Ty;
if (Type *Ty = AL.getParamStructRetType(ArgNo))
return Ty;
if (Type *Ty = AL.getParamElementType(ArgNo))
return Ty;
if (Type *Ty = AL.getParamInAllocaType(ArgNo))
return Ty;
if (Type *Ty = AL.getParamPreallocatedType(ArgNo))
return Ty;
return nullptr;
}
void SPIRVTypeScavenger::deduceFunctionType(Function &F) {
SmallVector<Argument *, 8> PointerArgs;
for (Argument &Arg : F.args()) {
if (Arg.getType()->isPointerTy())
PointerArgs.push_back(&Arg);
}
// Get any arguments from attributes where possible.
for (Argument *Arg : PointerArgs) {
Type *Ty = getParamType(F.getAttributes(), Arg->getArgNo());
if (Ty)
DeducedTypes[Arg] = Ty;
}
// At this point, anything that we can get definitively correct is going to
// come from declarations of builtins. If we have the actual implementation of
// the function available, we should try to recover types from the function
// definition itself. By early returning here, we ensure that remaining
// arguments will get deferred types that will follow the regular typing
// process.
if (!F.isDeclaration())
return;
// Recover known information from known SPIR-V builtin operations represented
// as functions.
StringRef DemangledName;
if (oclIsBuiltin(F.getName(), DemangledName) ||
isDecoratedSPIRVFunc(&F, DemangledName)) {
Op OC = getSPIRVFuncOC(DemangledName);
if (OC != OpNop) {
for (Argument *Arg : PointerArgs) {
Type *PointeeTy = getPointerUseType(&F, OC, Arg->getArgNo());
if (PointeeTy) {
DeducedTypes[Arg] = PointeeTy;
LLVM_DEBUG(dbgs()
<< "Arg " << Arg->getArgNo() << " of " << F.getName()
<< " has type " << *PointeeTy << "\n");
}
}
}
}
if (auto IntrinID = F.getIntrinsicID()) {
deduceIntrinsicTypes(F, IntrinID);
}
// If the function is a mangled name, try to recover types from the Itanium
// name mangling.
if (F.getName().startswith("_Z")) {
SmallVector<Type *, 8> ParamTypes;
getParameterTypes(&F, ParamTypes);
for (Argument *Arg : PointerArgs) {
if (auto *Ty = dyn_cast<TypedPointerType>(ParamTypes[Arg->getArgNo()])) {
DeducedTypes[Arg] = Ty->getElementType();
LLVM_DEBUG(dbgs() << "Arg " << Arg->getArgNo() << " of " << F.getName()
<< " has type " << *Ty->getElementType() << "\n");
}
}
}
}
/// Certain constant types (null, undef, and poison) will get their type from
/// the use of the constant. We discover the type of the use by inserting a
/// synthetic bitcast instruction before the use. For these types, we need to
/// have special handling in a few places, and this indicates that it needs to
/// be done.
static bool doesNotImplyType(Value *V) {
return isa<ConstantPointerNull>(V) || isa<UndefValue>(V);
}
SPIRVTypeScavenger::DeducedType
SPIRVTypeScavenger::computePointerElementType(Value *V) {
assert(V->getType()->isPtrOrPtrVectorTy() &&
"Trying to get the pointer type of a non-pointer value?");
// Don't try to store null, undef, or poison in our type map. We'll call these
// i8* by default; if any use has a different type, a bitcast will be added
// later.
if (doesNotImplyType(V)) {
return Type::getInt8Ty(V->getContext());
}
// Check if we've already deduced a type for the value.
DeducedType &Ty = DeducedTypes[V];
if (Ty) {
return Ty;
}
// There are basically three categories of pointer-typed values:
// 1. Values that have a well-defined pointee type (e.g., alloca). Return the
// known type from this method.
// 2. Values that have no intrinsic type (e.g., inttoptr). A new deferred
// type construct will be created that will allow a use to identify the
// type instead.
// 3. Values that propagate their source type (e.g., phi). This wil return
// the type of their source argument, whether it is deferred or known.
// This lambda does the logic to propagate the third category.
auto PropagateType = [&](Value *Source) -> DeducedType {
// If the source argument is null, undef, or poison, then consider the
// propagation to be untyped. This will fall through to the case where we
// construct a nw
if (doesNotImplyType(Source))
return nullptr;
DeducedType SourceTy = computePointerElementType(Source);
if (auto *Deferred = dyn_cast<DeferredType *>(SourceTy)) {
LLVM_DEBUG(dbgs() << *Source << " will receive the same type as " << *V
<< "\n");
Deferred->Values.push_back(V);
}
return SourceTy;
};
// These values have a natural pointer type (category 1).
if (auto *GV = dyn_cast<GlobalValue>(V))
Ty = GV->getValueType();
else if (auto *Alloca = dyn_cast<AllocaInst>(V))
Ty = Alloca->getAllocatedType();
else if (auto *GEP = dyn_cast<GEPOperator>(V))
Ty = GEP->getResultElementType();
// These values have no intrinsic type (category 2).
else if (isa<IntToPtrInst>(V) || isa<BitCastInst>(V))
Ty = nullptr;
// These values propagate the source type (category 3).
else if (auto *AS = dyn_cast<AddrSpaceCastInst>(V))
Ty = PropagateType(AS->getPointerOperand());
else if (auto *Freeze = dyn_cast<FreezeInst>(V))
Ty = PropagateType(Freeze->getOperand(0));
// Yes, atomicrmw xchg can exchange a ptr type. This will also be considered
// to propagate the source type.
else if (auto *AI = dyn_cast<AtomicRMWInst>(V))
Ty = PropagateType(AI->getValOperand());
// Selects and phis propagate types as well. Only investigate one of the
// sources here as the type of the operation: if the primary operand has a
// deferred type and a secondary operand has a known type, we'll discover that
// when we handle uses anyways.
else if (auto *Select = dyn_cast<SelectInst>(V))
Ty = PropagateType(Select->getTrueValue());
else if (auto *Phi = dyn_cast<PHINode>(V))
Ty = PropagateType(Phi->getIncomingValue(0));
else if (auto *Arg = dyn_cast<Argument>(V)) {
// Check for an sret/byval/etc. attribute on the argument. If it doesn't
// have one, then it will return null. There are other cases where we can
// pre-fill the type of an argument, but that is handled in an earlier
// pre-pass.
unsigned ArgNo = Arg->getArgNo();
Ty = getParamType(Arg->getParent()->getAttributes(), ArgNo);
} else if (auto *CB = dyn_cast<CallBase>(V)) {
// TODO: Handle return types properly.
Ty = Type::getInt8Ty(CB->getContext());
} else {
// TODO: handle pointer-valued extractvalue, which probably comes from
// cmpxchg or inlineasm.
LLVM_DEBUG(
dbgs()
<< "Value " << *V << " is not a known type of "
<< "pointer-valued instruction, this logic is probably wrong!\n");
}
// If we haven't gotten a type at this point, we need to construct a new
// deferred type to handle this value. This also considers cases where we
// were trying to propagate a null constant.
if (!Ty) {
LLVM_DEBUG(dbgs() << "Value " << *V
<< " has no known type, creating a new type for it\n");
DeferredType *Deferred = new DeferredType;
Deferred->Values.push_back(V);
Ty = Deferred;
}
return Ty;
}
void SPIRVTypeScavenger::correctUseTypes(Instruction &I) {
// This represents the types of all pointer-valued operands of the
// instruction.
SmallVector<std::pair<unsigned, DeducedType>, 4> PointerOperands;
// For instructions which operate with memory (e.g., load, store), this is the
// value whose type will determine the type of the operand. When the memory
// type is just a generic `ptr` type, this will be used to generate a
// pointer-to-pointer-to-something type.
auto GetMemoryType = [&](Value *V) -> DeducedType {
if (V->getType()->isPointerTy())
return V;
return V->getType();
};
// Basic instructions that have a clearly fixed type.
if (auto *GEP = dyn_cast<GetElementPtrInst>(&I)) {
PointerOperands.emplace_back(GetElementPtrInst::getPointerOperandIndex(),
GEP->getSourceElementType());
} else if (auto *LI = dyn_cast<LoadInst>(&I)) {
PointerOperands.emplace_back(LoadInst::getPointerOperandIndex(),
GetMemoryType(LI));
} else if (auto *SI = dyn_cast<StoreInst>(&I)) {
PointerOperands.emplace_back(StoreInst::getPointerOperandIndex(),
GetMemoryType(SI->getValueOperand()));
} else if (auto *AI = dyn_cast<AtomicCmpXchgInst>(&I)) {
PointerOperands.emplace_back(AtomicCmpXchgInst::getPointerOperandIndex(),
GetMemoryType(AI->getCompareOperand()));
} else if (auto *AI = dyn_cast<AtomicRMWInst>(&I)) {
PointerOperands.emplace_back(AtomicRMWInst::getPointerOperandIndex(),
GetMemoryType(AI->getValOperand()));
} else if (auto *CI = dyn_cast<ICmpInst>(&I)) {
// icmp can compare pointers. If it isn't, ignore the instruction.
if (!CI->getOperand(0)->getType()->isPointerTy())
return;
// The two pointer operands should have the same type.
PointerOperands.emplace_back(1,
computePointerElementType(CI->getOperand(0)));
} else if (auto *SI = dyn_cast<SelectInst>(&I)) {
if (!SI->getType()->isPointerTy())
return;
// Both selected values should have the same type as the result.
DeducedType Ty = computePointerElementType(SI);
PointerOperands.emplace_back(1, Ty);
PointerOperands.emplace_back(2, Ty);
} else if (auto *Phi = dyn_cast<PHINode>(&I)) {
if (!Phi->getType()->isPointerTy())
return;
DeducedType Ty = computePointerElementType(Phi);
for (Use &U : Phi->incoming_values()) {
PointerOperands.emplace_back(U.getOperandNo(), Ty);
}
} else if (isa<FreezeInst>(&I) || isa<AddrSpaceCastInst>(&I)) {
if (!I.getType()->isPointerTy())
return;
PointerOperands.emplace_back(0, computePointerElementType(&I));
} else if (auto *RI = dyn_cast<ReturnInst>(&I)) {
if (!RI->getReturnValue() ||
!RI->getReturnValue()->getType()->isPointerTy())
return;
// TODO: Handle return types properly.
PointerOperands.emplace_back(0, Type::getInt8Ty(I.getContext()));
} else if (auto *CB = dyn_cast<CallBase>(&I)) {
PointerOperands.emplace_back(CB->getCalledOperandUse().getOperandNo(),
CB->getFunctionType());
// If we have an identified function for the call instruction, map the
// arguments we pass in to the argument requirements of the function.
if (Function *F = CB->getCalledFunction()) {
for (Use &U : CB->args()) {
// If we're calling a var-arg method, we have more operands than the
// function has parameters. Bail out if we hit that point.
unsigned ArgNo = CB->getArgOperandNo(&U);
if (ArgNo >= F->arg_size())
break;
if (U->getType()->isPointerTy())
PointerOperands.emplace_back(
U.getOperandNo(), computePointerElementType(F->getArg(ArgNo)));
}
}
}
// TODO: Handle insertvalue instructions that insert pointers.
// Now that we've collected all the pointer-valued operands in the
// instruction, go through and insert bitcasts for any operands that have the
// wrong type, fix any deferred types whose types are now known, and merge any
// deferred types that need to have the same type.
IRBuilder<NoFolder> Builder(&I);
for (auto &Pair : PointerOperands) {
Use &U = I.getOperandUse(Pair.first);
DeducedType UsedTy = Pair.second;
DeducedType SourceTy = computePointerElementType(U);
// If we're handling a PHI node, we need to insert in the basic block that
// the value comes in from, not immediately before this instruction.
if (auto *Phi = dyn_cast<PHINode>(&I)) {
BasicBlock *SourceBlock = Phi->getIncomingBlock(U);
Builder.SetInsertPoint(SourceBlock->getTerminator());
}
auto InsertCast = [&]() {
if (isa<Type *>(UsedTy)) {
LLVM_DEBUG(dbgs() << "Inserting bitcast of " << *U.get()
<< " to change its type to " << *cast<Type *>(UsedTy)
<< " because of use in " << *U.getUser() << "\n");
} else {
LLVM_DEBUG(dbgs() << "Inserting bitcast of " << *U.get()
<< " for indirect pointer use of "
<< *cast<Value *>(UsedTy) << " because of use in "
<< *U.getUser() << "\n");
}
Value *CastedValue =
Builder.Insert(CastInst::CreatePointerCast(U, U->getType()));
DeducedTypes[CastedValue] = UsedTy;
U.set(CastedValue);
};
// This handles the scenario where a deferred type gets resolved to a fixed
// type during handling of this instruction, and another operand is using
// the same deferred type later in the instruction.
auto ReplaceTypeInOperands = [&](DeducedType From, DeducedType To) {
for (auto &ReplacePair : PointerOperands) {
if (ReplacePair.second == From)
ReplacePair.second = To;
}
};
if (isa<Value *>(UsedTy)) {
// When the use is of an indirect-pointer type, insert a bitcast to the
// use type only for this use. This prevents indirect pointers from
// generally leaking into more of the type system and causing potential
// issues.
InsertCast();
} else if (auto *FixedTy = dyn_cast<Type *>(SourceTy)) {
if (auto *FixedUseTy = dyn_cast<Type *>(UsedTy)) {
// Both source and use type are fixed -> insert a bitcast are different.
if (FixedTy != FixedUseTy) {
InsertCast();
}
} else if (auto *DeferredUseTy = dyn_cast<DeferredType *>(UsedTy)) {
// Source type is fixed, use type is deferred: set the deferred type to
// the fixed type.
fixType(*DeferredUseTy, FixedTy);
ReplaceTypeInOperands(DeferredUseTy, FixedTy);
}
} else if (auto *DeferredTy = dyn_cast<DeferredType *>(SourceTy)) {
if (auto *FixedUseTy = dyn_cast<Type *>(UsedTy)) {
// Source type is fixed, use type is deferred: set the deferred type to
// the fixed type.
fixType(*DeferredTy, FixedUseTy);
ReplaceTypeInOperands(DeferredTy, FixedUseTy);
} else if (auto *DeferredUseTy = dyn_cast<DeferredType *>(UsedTy)) {
// If they're both deferred, merge the two types together.
mergeType(DeferredTy, DeferredUseTy);
ReplaceTypeInOperands(DeferredUseTy, DeferredTy);
}
}
}
}
void SPIRVTypeScavenger::fixType(DeferredType &Ty, Type *ActualTy) {
for (Value *V : Ty.Values) {
LLVM_DEBUG(dbgs() << "Inferred type of " << *V << " to be " << *ActualTy
<< "\n");
DeducedTypes[V] = ActualTy;
}
delete &Ty;
}
void SPIRVTypeScavenger::mergeType(DeferredType *Ty1, DeferredType *Ty2) {
// It's possible we're trying to merge the same type into itself.
if (Ty1 == Ty2)
return;
for (Value *V : Ty2->Values) {
DeducedTypes[V] = Ty1;
Ty1->Values.push_back(V);
}
delete Ty2;
}
SPIRVTypeScavenger::PointeeType
SPIRVTypeScavenger::getPointerElementType(Value *V) {
PointerType *Ty = dyn_cast<PointerType>(V->getType());
assert(Ty && "Non-pointer types don't have pointee types");
if (!Ty->isOpaquePointerTy())
return Ty->getNonOpaquePointerElementType();
// Global values have a natural pointee type that we can use.
if (auto *GV = dyn_cast<GlobalValue>(V))
return GV->getValueType();
// If we get a null/undef/poison value (this should be rare, but it can
// happen if you use, e.g., store ptr null, ptr %val), then assume the result
// should be an i8. This aligns with the use in the original deduction.
if (doesNotImplyType(V)) {
return Type::getInt8Ty(V->getContext());
}
// If it's a constant expression, we won't have a type for it. Constant
// expressions are currently translated via converting them to instructions
// without a basic block.
bool IsFromConstantExpr =
isa<ConstantExpr>(V) ||
(isa<Instruction>(V) && !cast<Instruction>(V)->getParent());
(void)IsFromConstantExpr;
auto It = DeducedTypes.find(V);
assert((It != DeducedTypes.end() || IsFromConstantExpr) &&
"How have we not typed the value?");
if (It != DeducedTypes.end()) {
if (auto *Ty = dyn_cast<Type *>(It->second))
return Ty;
if (auto *ValTy = dyn_cast<Value *>(It->second))
return ValTy;
llvm_unreachable("Deferred types should have been resolved before now");
}
return Type::getInt8Ty(V->getContext());
}
Type *SPIRVTypeScavenger::getArgumentPointerElementType(Function *F,
unsigned ArgNo) {
return cast<Type *>(getPointerElementType(F->getArg(ArgNo)));
}