-
Notifications
You must be signed in to change notification settings - Fork 5
/
Copy pathsettings.py
209 lines (186 loc) · 5.86 KB
/
settings.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
import sys
import argparse
import datetime
__all__ = ["get_args"]
def get_args():
parser = argparse.ArgumentParser(
description="HAR dataset, model and optimization arguments",
formatter_class=argparse.ArgumentDefaultsHelpFormatter,
)
# get HAR arguments
parser.add_argument("--experiment", default=None, help="experiment name")
parser.add_argument(
"--train_mode", action="store_true", help="execute code in training mode"
)
parser.add_argument(
"--dataset",
default="opportunity",
type=str,
choices=["opportunity", "skoda", "pamap2", "hospital"],
help="HAR dataset",
)
parser.add_argument("--window", default=24, type=int, help="sliding window size")
parser.add_argument("--stride", default=12, type=int, help="sliding window stride")
parser.add_argument(
"--stride_test", default=1, type=int, help="set to 1 for sample-wise prediction"
)
parser.add_argument(
"--model", default="AttendDiscriminate", type=str, help="HAR architecture"
)
parser.add_argument(
"--epochs", default=300, type=int, help="number of training epochs"
)
parser.add_argument(
"--load_epoch", default=0, type=int, help="epoch to resume training"
)
parser.add_argument("--print_freq", default=40, type=int)
args = parser.parse_args()
if args.experiment is None:
args.experiment = datetime.datetime.now().strftime("%d_%m_%Y_%H_%M_%S")
# get HAR dataset arguments
if args.dataset == "opportunity":
args.num_class = 18
args.input_dim = 79
args.class_map = [
"Null",
"Open Door 1",
"Open Door 2",
"Close Door 1",
"Close Door 2",
"Open Fridge",
"Close Fridge",
"Open Dishwasher",
"Close Dishwasher",
"Open Drawer 1",
"Close Drawer 1",
"Open Drawer 2",
"Close Drawer 2",
"Open Drawer 3",
"Close Drawer 3",
"Clean Table",
"Drink from Cup",
"Toggle Switch",
]
elif args.dataset == "skoda":
args.num_class = 11
args.input_dim = 60
args.class_map = [
"Null",
"Write on Notepad",
"Open Hood",
"Close Hood",
"Check Door Gaps",
"Open Left Front Door",
"Close Left Front Door",
"Close Both Left Doors",
"Check Trunk Gaps",
"Open and Close Trunk",
"Check Steering Wheel",
]
elif args.dataset == "pamap2":
args.num_class = 12
args.input_dim = 52
args.class_map = [
"Rope Jumping",
"Lying",
"Sitting",
"Standing",
"Walking",
"Running",
"Cycling",
"Nordic Walking",
"Ascending Stairs",
"Descending Stairs",
"Vacuum Cleaning",
"Ironing",
]
elif args.dataset == "hospital":
args.num_class = 7
args.input_dim = 6
args.class_map = [
"Lying",
"Standing Up",
"Sitting",
"Walking",
"Lying Down",
"Sitting Down",
"Getting Up",
]
else:
print(f"[!] Unknown HAR dataset: {args.dataset}")
sys.exit(0)
args.path_data = f"./dataset/{args.dataset}.mat"
args.path_raw = f"./data/{args.dataset}/raw/"
args.path_processed = f"./data/{args.dataset}/processed/{args.window}_{args.stride}"
# get HAR optimization arguments
args.weighted_sampler = False
args.batch_size = 256
args.optimizer = "Adam"
args.clip_grad = 0
args.lr = 0.001
args.lr_decay = 0.9
args.lr_step = 10
args.mixup = True
args.alpha = 0.8
args.lr_cent = 0.001
if args.dataset == "opportunity":
args.init_weights = "orthogonal"
args.beta = 0.0003
args.dropout = 0.5
args.dropout_rnn = 0.25
args.dropout_cls = 0.5
elif args.dataset == "pamap2":
args.init_weights = None
args.beta = 0.003
args.dropout = 0.9
args.dropout_rnn = 0
args.dropout_cls = 0.5
elif args.dataset == "skoda":
args.init_weights = "orthogonal"
args.beta = 0.3
args.dropout = 0.5
args.dropout_rnn = 0.25
args.dropout_cls = 0
elif args.dataset == "hospital":
args.init_weights = "orthogonal"
args.beta = 0.3
args.dropout = 0.5
args.dropout_rnn = 0.25
args.dropout_cls = 0.5
# get HAR model arguments
if args.model == "AttendDiscriminate":
args.filter_num, args.filter_size = 64, 5
args.enc_num_layers = 2
args.enc_is_bidirectional = False
args.hidden_dim = 128
args.activation = "ReLU"
args.sa_div = 1
# set dataset and model arguments
config_dataset = {
"dataset": args.dataset,
"window": args.window,
"stride": args.stride,
"stride_test": args.stride_test,
"path_processed": args.path_processed,
}
config_model = {
"model": args.model,
"dataset": args.dataset,
"input_dim": args.input_dim,
"hidden_dim": args.hidden_dim,
"filter_num": args.filter_num,
"filter_size": args.filter_size,
"enc_num_layers": args.enc_num_layers,
"enc_is_bidirectional": args.enc_is_bidirectional,
"dropout": args.dropout,
"dropout_rnn": args.dropout_rnn,
"dropout_cls": args.dropout_cls,
"activation": args.activation,
"sa_div": args.sa_div,
"num_class": args.num_class,
"train_mode": args.train_mode,
"experiment": args.experiment,
}
return args, config_dataset, config_model
if __name__ == "__main__":
get_args()