-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathcomputeBertBaselineAccuracy.py
452 lines (360 loc) · 16.4 KB
/
computeBertBaselineAccuracy.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
import pandas as pd
import torch, re
import random
import time
import argparse, os
import torch.nn.functional as F
from transformers import BertTokenizer
from sklearn.preprocessing import LabelEncoder
from collections import Counter
from transformers import AdamW, get_linear_schedule_with_warmup
from sklearn.model_selection import train_test_split
from sklearn.metrics import accuracy_score, classification_report
import numpy as np
import torch
import torch.nn as nn
from transformers import BertModel
from torch.utils.data import TensorDataset, DataLoader, RandomSampler, SequentialSampler
parser = argparse.ArgumentParser()
parser.add_argument("--input", type=str, default="/data/en-el/")
parser.add_argument("--word", type=str, default='old_ADJ')
parser.add_argument("--seed", type=int, default=1001)
parser.add_argument("--test_file", type=str, default=None)
parser.add_argument("--num", type=int, default=-1)
parser.add_argument("--epochs", type=int, default=10)
args = parser.parse_args()
MAX_LEN = 128
def set_seed(seed_value=42):
"""Set seed for reproducibility.
"""
random.seed(seed_value)
np.random.seed(seed_value)
torch.manual_seed(seed_value)
torch.cuda.manual_seed_all(seed_value)
def preprocessing_for_bert(data):
"""Perform required preprocessing steps for pretrained BERT.
@param data (np.array): Array of texts to be processed.
@return input_ids (torch.Tensor): Tensor of token ids to be fed to a model.
@return attention_masks (torch.Tensor): Tensor of indices specifying which
tokens should be attended to by the model.
"""
# Create empty lists to store outputs
input_ids = []
attention_masks = []
# For every sentence...
for sent in data:
# `encode_plus` will:
# (1) Tokenize the sentence
# (2) Add the `[CLS]` and `[SEP]` token to the start and end
# (3) Truncate/Pad sentence to max length
# (4) Map tokens to their IDs
# (5) Create attention mask
# (6) Return a dictionary of outputs
encoded_sent = tokenizer.encode_plus(
text=text_preprocessing(sent), # Preprocess sentence
add_special_tokens=True, # Add `[CLS]` and `[SEP]`
max_length=MAX_LEN, # Max length to truncate/pad
pad_to_max_length=True, # Pad sentence to max length
# return_tensors='pt', # Return PyTorch tensor
return_attention_mask=True # Return attention mask
)
# Add the outputs to the lists
input_ids.append(encoded_sent.get('input_ids'))
attention_masks.append(encoded_sent.get('attention_mask'))
# Convert lists to tensors
input_ids = torch.tensor(input_ids)
attention_masks = torch.tensor(attention_masks)
return input_ids, attention_masks
def text_preprocessing(text):
"""
- Remove entity mentions (eg. '@united')
- Correct errors (eg. '&' to '&')
@param text (str): a string to be processed.
@return text (Str): the processed string.
"""
# Remove '@name'
text = re.sub(r'(@.*?)[\s]', ' ', text)
# Replace '&' with '&'
text = re.sub(r'&', '&', text)
# Remove trailing whitespace
text = re.sub(r'\s+', ' ', text).strip()
return text
# Create the BertClassfier class
class BertClassifier(nn.Module):
"""Bert Model for Classification Tasks.
"""
def __init__(self, freeze_bert=False, num_labels=2):
"""
@param bert: a BertModel object
@param classifier: a torch.nn.Module classifier
@param freeze_bert (bool): Set `False` to fine-tune the BERT model
"""
super(BertClassifier, self).__init__()
# Specify hidden size of BERT, hidden size of our classifier, and number of labels
D_in, H, D_out = 768, 50, num_labels
# Instantiate BERT model
self.bert = BertModel.from_pretrained('bert-base-uncased')
# Instantiate an one-layer feed-forward classifier
self.classifier = nn.Sequential(
nn.Linear(D_in, H),
nn.ReLU(),
#nn.Dropout(0.5),
nn.Linear(H, D_out)
)
# Freeze the BERT model
if freeze_bert:
for param in self.bert.parameters():
param.requires_grad = False
def forward(self, input_ids, attention_mask):
"""
Feed input to BERT and the classifier to compute logits.
@param input_ids (torch.Tensor): an input tensor with shape (batch_size,
max_length)
@param attention_mask (torch.Tensor): a tensor that hold attention mask
information with shape (batch_size, max_length)
@return logits (torch.Tensor): an output tensor with shape (batch_size,
num_labels)
"""
# Feed input to BERT
outputs = self.bert(input_ids=input_ids,
attention_mask=attention_mask)
# Extract the last hidden state of the token `[CLS]` for classification task
last_hidden_state_cls = outputs[0][:, 0, :]
# Feed input to classifier to compute logits
logits = self.classifier(last_hidden_state_cls)
return logits
def initialize_model(epochs, num_labels):
"""Initialize the Bert Classifier, the optimizer and the learning rate scheduler.
"""
# Instantiate Bert Classifier
bert_classifier = BertClassifier(freeze_bert=False, num_labels=num_labels)
# Tell PyTorch to run the model on GPU
bert_classifier.to(device)
# Create the optimizer
optimizer = AdamW(bert_classifier.parameters(),
lr=5e-5, # Default learning rate
eps=1e-8 # Default epsilon value
)
# Total number of training steps
total_steps = len(train_dataloader) * epochs
# Set up the learning rate scheduler
scheduler = get_linear_schedule_with_warmup(optimizer,
num_warmup_steps=0, # Default value
num_training_steps=total_steps)
return bert_classifier, optimizer, scheduler
def train(model, train_dataloader, val_dataloader, optimizer, scheduler, epochs=4, evaluation=False):
"""Train the BertClassifier model.
"""
# Start training loop
print("Start training...\n")
for epoch_i in range(epochs):
# =======================================
# Training
# =======================================
# Print the header of the result table
print(f"{'Epoch':^7} | {'Batch':^7} | {'Train Loss':^12} | {'Val Loss':^10} | {'Val Acc':^9} | {'Elapsed':^9}")
print("-" * 70)
# Measure the elapsed time of each epoch
t0_epoch, t0_batch = time.time(), time.time()
# Reset tracking variables at the beginning of each epoch
total_loss, batch_loss, batch_counts = 0, 0, 0
# Put the model into the training mode
model.train()
# For each batch of training data...
for step, batch in enumerate(train_dataloader):
batch_counts += 1
# Load batch to GPU
b_input_ids, b_attn_mask, b_labels = tuple(t.to(device) for t in batch)
# Zero out any previously calculated gradients
model.zero_grad()
# Perform a forward pass. This will return logits.
logits = model(b_input_ids, b_attn_mask)
# Compute loss and accumulate the loss values
loss = loss_fn(logits, b_labels)
batch_loss += loss.item()
total_loss += loss.item()
# Perform a backward pass to calculate gradients
loss.backward()
# Clip the norm of the gradients to 1.0 to prevent "exploding gradients"
torch.nn.utils.clip_grad_norm_(model.parameters(), 1.0)
# Update parameters and the learning rate
optimizer.step()
scheduler.step()
# Print the loss values and time elapsed for every 20 batches
if (step % 20 == 0 and step != 0) or (step == len(train_dataloader) - 1):
# Calculate time elapsed for 20 batches
time_elapsed = time.time() - t0_batch
# Print training results
print(
f"{epoch_i + 1:^7} | {step:^7} | {batch_loss / batch_counts:^12.6f} | {'-':^10} | {'-':^9} | {time_elapsed:^9.2f}")
# Reset batch tracking variables
batch_loss, batch_counts = 0, 0
t0_batch = time.time()
# Calculate the average loss over the entire training data
avg_train_loss = total_loss / len(train_dataloader)
print("-" * 70)
# =======================================
# Evaluation
# =======================================
if evaluation == True:
# After the completion of each training epoch, measure the model's performance
# on our validation set.
val_loss, val_accuracy = evaluate(model, val_dataloader)
# Print performance over the entire training data
time_elapsed = time.time() - t0_epoch
print(
f"{epoch_i + 1:^7} | {'-':^7} | {avg_train_loss:^12.6f} | {val_loss:^10.6f} | {val_accuracy:^9.2f} | {time_elapsed:^9.2f}")
print("-" * 70)
print("\n")
print("Training complete!")
def evaluate(model, val_dataloader):
"""After the completion of each training epoch, measure the model's performance
on our validation set.
"""
# Put the model into the evaluation mode. The dropout layers are disabled during
# the test time.
model.eval()
# Tracking variables
val_accuracy = []
val_loss = []
# For each batch in our validation set...
for batch in val_dataloader:
# Load batch to GPU
b_input_ids, b_attn_mask, b_labels = tuple(t.to(device) for t in batch)
# Compute logits
with torch.no_grad():
logits = model(b_input_ids, b_attn_mask)
# Compute loss
loss = loss_fn(logits, b_labels)
val_loss.append(loss.item())
# Get the predictions
preds = torch.argmax(logits, dim=1).flatten()
# Calculate the accuracy rate
accuracy = (preds == b_labels).cpu().numpy().mean() * 100
val_accuracy.append(accuracy)
# Compute the average accuracy and loss over the validation set.
val_loss = np.mean(val_loss)
val_accuracy = np.mean(val_accuracy)
return val_loss, val_accuracy
def bert_predict(model, test_dataloader):
"""Perform a forward pass on the trained BERT model to predict probabilities
on the test set.
"""
# Put the model into the evaluation mode. The dropout layers are disabled during
# the test time.
model.eval()
all_logits = []
# For each batch in our test set...
for batch in test_dataloader:
# Load batch to GPU
b_input_ids, b_attn_mask = tuple(t.to(device) for t in batch)[:2]
# Compute logits
with torch.no_grad():
logits = model(b_input_ids, b_attn_mask)
all_logits.append(logits)
# Concatenate logits from each batch
all_logits = torch.cat(all_logits, dim=0)
# Apply softmax to calculate probabilities
probs = F.softmax(all_logits, dim=1).cpu().numpy()
return probs
if __name__ == "__main__":
input_dir = args.input + f'/{args.word}/'
token_nums_file = input_dir + f'{args.word}.new.test.features.token.nums'
train_input = input_dir + f'{args.word}.new.train.features'
test_input = input_dir + f'{args.word}.new.test.features'
if os.path.exists(train_input):
print(f"Reading existing train/test from {train_input}")
all_train, all_test = pd.read_csv(train_input, sep=","), pd.read_csv(test_input, sep=",")
new_columns = all_train.columns.tolist()
#combine all data and report cross-validation scores
all_data = all_train
#shuffle training data
all_data = all_data.sample(frac=1)
#Get labels
label_encoder = LabelEncoder()
label_encoder = label_encoder.fit(all_train[["label"]])
label2id = dict(zip(label_encoder.classes_, label_encoder.transform(label_encoder.classes_)))
id2label = {v:k for k,v in label2id.items()}
print(label2id)
all_train_features, all_train_label = all_data["orig_sentence"], label_encoder.transform(all_data[["label"]])
all_test_features, all_test_label = all_test["orig_sentence"], label_encoder.transform(all_test[["label"]])
print(f"Train {all_train_features.shape} {all_train_label.shape}, Test {all_test_features.shape} {all_test_label.shape}.")
print(all_train_features.sample(5))
print(all_train_label[:5])
counter = Counter(all_train_label)
total_samples = len(all_data)
baseline_accuracy_per_class = {}
minority = 10000000
majority = -1
label_list = []
for class_ in range(len(counter)):
label_list.append(id2label[class_])
value = counter[class_]
if value < minority:
minority = value
if value > majority:
majority = value
baseline_accuracy_per_class[id2label[class_]] = value * 1.0 / total_samples
print(f"Baseline score for class {class_}: {id2label[class_]} = {value * 1.0 / total_samples}")
X = all_train_features
y = all_train_label
X_train, X_val, y_train, y_val = \
train_test_split(X, y, test_size=0.2, random_state=args.seed, stratify=y)
if torch.cuda.is_available():
device = torch.device("cuda")
print(f'There are {torch.cuda.device_count()} GPU(s) available.')
print('Device name:', torch.cuda.get_device_name(0))
else:
print('No GPU available, using the CPU instead.')
device = torch.device("cpu")
# Load the BERT tokenizer
tokenizer = BertTokenizer.from_pretrained('bert-base-uncased', do_lower_case=True)
# Print sentence 0 and its encoded token ids
token_ids = list(preprocessing_for_bert([X[0]])[0].squeeze().numpy())
print('Original: ', X[0])
print('Token IDs: ', token_ids)
# Run function `preprocessing_for_bert` on the train set and the validation set
print('Tokenizing data...')
train_inputs, train_masks = preprocessing_for_bert(X_train)
val_inputs, val_masks = preprocessing_for_bert(X_val)
# Convert other data types to torch.Tensor
train_labels = torch.tensor(y_train)
val_labels = torch.tensor(y_val)
# For fine-tuning BERT, the authors recommend a batch size of 16 or 32.
batch_size = 32
# Create the DataLoader for our training set
train_data = TensorDataset(train_inputs, train_masks, train_labels)
train_sampler = RandomSampler(train_data)
train_dataloader = DataLoader(train_data, sampler=train_sampler, batch_size=batch_size)
# Create the DataLoader for our validation set
val_data = TensorDataset(val_inputs, val_masks, val_labels)
val_sampler = SequentialSampler(val_data)
val_dataloader = DataLoader(val_data, sampler=val_sampler, batch_size=batch_size)
num_labels = len(counter)
# Specify loss function
loss_fn = nn.CrossEntropyLoss()
set_seed(args.seed) # Set seed for reproducibility
bert_classifier, optimizer, scheduler = initialize_model(epochs=args.epochs, num_labels=num_labels)
train(bert_classifier, train_dataloader, val_dataloader, optimizer, scheduler, epochs=2, evaluation=True)
# Compute predicted probabilities on the test set
probs = bert_predict(bert_classifier, val_dataloader)
# Get predictions from the probabilities
preds_flat = np.argmax(probs, axis=1).flatten()
print(preds_flat.shape)
labels_flat = y_val.flatten()
print("Val Accuracy : %.4g" % accuracy_score(labels_flat, preds_flat))
#Test accuracy
#Run `preprocessing_for_bert` on the test set
print('Tokenizing data...')
test_inputs, test_masks = preprocessing_for_bert(all_test_features)
# Create the DataLoader for our test set
test_dataset = TensorDataset(test_inputs, test_masks)
test_sampler = SequentialSampler(test_dataset)
test_dataloader = DataLoader(test_dataset, sampler=test_sampler, batch_size=32)
# Compute predicted probabilities on the test set
probs = bert_predict(bert_classifier, test_dataloader)
# Get predictions from the probabilities
preds_flat = np.argmax(probs, axis=1).flatten()
print(preds_flat.shape)
labels_flat = all_test_label.flatten()
print("Test Accuracy : %.4g" % accuracy_score(all_test_label, preds_flat))