-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathapp.py
46 lines (30 loc) · 1.02 KB
/
app.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
from flask import Flask,request, render_template
import pandas as pd
from tensorflow.keras.models import load_model
from tensorflow.keras.losses import mae
import numpy as np
app = Flask(__name__)
@app.route('/')
def homepage():
return render_template("index.html")
@app.route('/predict',methods=['POST','GET'])
def predict():
uploaded_file = request.files["csvFile"]
uploaded_file.save("sample.csv")
df = pd.read_csv('sample.csv')
data = df.iloc[:1, :].to_numpy()
data = np.divide(data, 13.682)
data = data.reshape(1, -1)
model = load_model('autoencoder_Model')
reconstructions = model(data)
loss = mae(reconstructions, data)
result = loss.numpy() < 0.03293371
if result:
data = "Your heart ECG signal looks fine"
else:
data = 'Danger!, Please go to the doctor'
return render_template("final.html", data = data)
if __name__ == '__main__':
app.run()
# from waitress import serve
# serve(app, host="0.0.0.0", port=8080)