-
Notifications
You must be signed in to change notification settings - Fork 9
/
Copy pathPrepareWikiSQLDataset.py
206 lines (161 loc) · 7.53 KB
/
PrepareWikiSQLDataset.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
import json
import os
import subprocess
FNULL = open(os.devnull, 'w')
cond_ops = ['=', '>', '<']
if __name__ == "__main__":
trainData = "./Data/WikiSQL/train.jsonl"
trainDataTables = "./Data/WikiSQL/train.tables.jsonl"
devData = "./Data/WikiSQL/dev.jsonl"
devDataTables = "./Data/WikiSQL/dev.tables.jsonl"
testData = "./Data/WikiSQL/test.jsonl"
testDataTables = "./Data/WikiSQL/test.tables.jsonl"
# Train tables
trainTablesInfo = dict()
with open(trainDataTables) as f:
for line in f:
jsonLine = json.loads(line)
tableID = jsonLine["id"]
trainTablesInfo[tableID] = jsonLine
# Train data
train_source = list()
train_target = list()
with open(trainData) as f:
for line in f:
jsonLine = json.loads(line)
aggregation = jsonLine["sql"]["agg"]
if aggregation == 0:
question = jsonLine["question"]
train_source.append(question.lower())
tableID = jsonLine["table_id"]
selectAttribute = trainTablesInfo[tableID]["header"][jsonLine["sql"]["sel"]]
item_target = ""
item_target += selectAttribute
conditions = jsonLine["sql"]["conds"]
for inx, condition in enumerate(conditions):
#print("Condition #" + str(inx))
#print("Attribute:", trainTablesInfo[tableID]["header"][condition[0]])
#print("Logic:", cond_ops[condition[1]])
#print("Value:", condition[2])
item_target += " ; " + str(trainTablesInfo[tableID]["header"][condition[0]]) + " " + str(cond_ops[condition[1]]) + " " + str(condition[2])
train_target.append(item_target.lower())
#for inx, train_item_source in enumerate(train_source):
# print(train_item_source)
# print(train_target[inx])
print("Training sources:", len(train_source))
print("Training targets:", len(train_target))
# Dev tables
devTablesInfo = dict()
with open(devDataTables) as f:
for line in f:
jsonLine = json.loads(line)
tableID = jsonLine["id"]
devTablesInfo[tableID] = jsonLine
# Dev data
dev_source = list()
dev_target = list()
with open(devData) as f:
for line in f:
jsonLine = json.loads(line)
aggregation = jsonLine["sql"]["agg"]
if aggregation == 0:
question = jsonLine["question"]
dev_source.append(question.lower())
tableID = jsonLine["table_id"]
selectAttribute = devTablesInfo[tableID]["header"][jsonLine["sql"]["sel"]]
item_target = ""
item_target += selectAttribute
conditions = jsonLine["sql"]["conds"]
for inx, condition in enumerate(conditions):
#print("Condition #" + str(inx))
#print("Attribute:", devTablesInfo[tableID]["header"][condition[0]])
#print("Logic:", cond_ops[condition[1]])
#print("Value:", condition[2])
item_target += " ; " + str(devTablesInfo[tableID]["header"][condition[0]]) + " " + str(cond_ops[condition[1]]) + " " + str(condition[2])
dev_target.append(item_target.lower())
#for inx, dev_item_source in enumerate(dev_source):
# print(dev_item_source)
# print(dev_target[inx])
print("Dev sources:", len(dev_source))
print("Dev targets:", len(dev_target))
# Test tables
testTablesInfo = dict()
with open(testDataTables) as f:
for line in f:
jsonLine = json.loads(line)
tableID = jsonLine["id"]
testTablesInfo[tableID] = jsonLine
# Test data
test_source = list()
test_target = list()
with open(testData) as f:
for line in f:
jsonLine = json.loads(line)
aggregation = jsonLine["sql"]["agg"]
if aggregation == 0:
question = jsonLine["question"]
test_source.append(question.lower())
tableID = jsonLine["table_id"]
selectAttribute = testTablesInfo[tableID]["header"][jsonLine["sql"]["sel"]]
item_target = ""
item_target += selectAttribute
conditions = jsonLine["sql"]["conds"]
for inx, condition in enumerate(conditions):
#print("Condition #" + str(inx))
#print("Attribute:", testTablesInfo[tableID]["header"][condition[0]])
#print("Logic:", cond_ops[condition[1]])
#print("Value:", condition[2])
item_target += " ; " + str(testTablesInfo[tableID]["header"][condition[0]]) + " " + str(cond_ops[condition[1]]) + " " + str(condition[2])
test_target.append(item_target.lower())
#for inx, test_item_source in enumerate(test_source):
# print(test_item_source)
# print(test_target[inx])
print("Test sources:", len(test_source))
print("Test targets:", len(test_target))
# Save
training_data_save_dir = "./Data/TrainingData/WikiSQL/"
identifier = "WikiSQL"
## Sources
outF = open(training_data_save_dir + "src-dataset-" + identifier + "-train.txt", "w")
for line in train_source:
outF.write(line)
outF.write("\n")
outF.close()
outF = open(training_data_save_dir + "src-dataset-" + identifier + "-val.txt", "w")
for line in dev_source:
outF.write(line)
outF.write("\n")
outF.close()
outF = open(training_data_save_dir + "src-dataset-" + identifier + "-test.txt", "w")
for line in test_source:
outF.write(line)
outF.write("\n")
outF.close()
## Targets
outF = open(training_data_save_dir + "tgt-dataset-" + identifier + "-train.txt", "w")
for inx, line in enumerate(train_source):
outF.write(train_target[inx])
outF.write("\n")
outF.close()
outF = open(training_data_save_dir + "tgt-dataset-" + identifier + "-val.txt", "w")
for inx, line in enumerate(dev_source):
outF.write(dev_target[inx])
outF.write("\n")
outF.close()
outF = open(training_data_save_dir + "tgt-dataset-" + identifier + "-test.txt", "w")
for inx, line in enumerate(test_source):
outF.write(test_target[inx])
outF.write("\n")
outF.close()
print("* Training data for OpenNMT saved to disk.")
# Format for OpenNMT
trainingDataSaveDir = "./Data/TrainingData/WikiSQL/"
OpenNMTcmd = 'onmt_preprocess -train_src ' + str(trainingDataSaveDir) + 'src-dataset-WikiSQL-train.txt -train_tgt ' + str(trainingDataSaveDir) + 'tgt-dataset-WikiSQL-train.txt -valid_src ' + str(trainingDataSaveDir) + 'src-dataset-WikiSQL-val.txt -valid_tgt ' + str(trainingDataSaveDir) + 'tgt-dataset-WikiSQL-val.txt -save_data ' + str(trainingDataSaveDir) + 'dataset -num_threads 20 -dynamic_dict -share_vocab -overwrite'
process = subprocess.Popen(OpenNMTcmd, shell=True, stdout=FNULL, stderr=subprocess.STDOUT)
process.wait()
# Use FastText embeddings
fasttext_embedding_size = 300
cmd = 'python3 ./RandomQueryGenerator/embeddings_to_torch.py -emb_file_both "./NLP/fasttext_dir/wiki-news-' + str(fasttext_embedding_size) + 'd-1M.vec" -dict_file ' + str(trainingDataSaveDir) + 'dataset.vocab.pt -output_file "' + str(trainingDataSaveDir) + 'embeddings"'
process = subprocess.Popen(cmd, shell=True, stdout=FNULL, stderr=subprocess.STDOUT)
print(cmd)
process.wait()