-
Notifications
You must be signed in to change notification settings - Fork 17
/
Copy pathmain.py
72 lines (59 loc) · 2.04 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
import torch
from fastapi import FastAPI, WebSocket
from src import quantize
from langchain import PromptTemplate
from langchain_community.llms import LlamaCpp
from langchain.callbacks.manager import CallbackManager
from langchain.callbacks.streaming_stdout import StreamingStdOutCallbackHandler
from langchain_core.prompts import PromptTemplate
from core import default_repo_id
app = FastAPI()
# Callbacks support token-wise streaming
callback_manager = CallbackManager([StreamingStdOutCallbackHandler()])
#check if cuda is available
device = 'cuda' if torch.cuda.is_available() else 'cpu'
n_gpu_layers = None
if device == "cuda":
n_gpu_layers = -1
else:
n_gpu_layers = 0
n_ctx = 6000
n_batch = 30
n_parts = 1
temperature = 0.9
max_tokens = 500
def snapshot_download_and_convert_to_gguf(repo_id):
gguf_model_path = quantize.quantize_model(repo_id)
return gguf_model_path
def init_llm_chain(model_path):
llm = LlamaCpp(
model_path=model_path,
n_gpu_layers=n_gpu_layers,
n_ctx=n_ctx,
n_batch=n_batch,
temperature=temperature,
max_tokens=max_tokens,
n_parts=n_parts,
callback_manager=callback_manager,
verbose=True
)
template = """Question: {question}
Answer: Let's work this out in a step by step way to be sure we have the right answer."""
prompt = PromptTemplate.from_template(template)
llm_chain = prompt | llm
return llm_chain, llm
model_path = snapshot_download_and_convert_to_gguf(default_repo_id)
llm_chain, llm = init_llm_chain(model_path)
@app.websocket("/generate")
async def websocket_endpoint(websocket: WebSocket):
await websocket.accept()
while True:
prompt = await websocket.receive_text()
async def bot(prompt):
print("Question: ", prompt)
output = llm_chain.stream(prompt)
print("stream:", output)
for character in output:
print(character)
await websocket.send_text(character)
await bot(prompt)