Skip to content

Commit 6f718c2

Browse files
committed
Merge branch 'master' of github.com:AlexeyAB/darknet
2 parents 893b889 + 2fc7fbb commit 6f718c2

File tree

1 file changed

+32
-2
lines changed

1 file changed

+32
-2
lines changed

README.md

+32-2
Original file line numberDiff line numberDiff line change
@@ -41,16 +41,46 @@ More details: http://pjreddie.com/darknet/yolo/
4141

4242

4343

44-
| ![Darknet Logo](http://pjreddie.com/media/files/darknet-black-small.png) |   ![map_fps](https://user-images.githubusercontent.com/4096485/80163662-7ed04100-85df-11ea-8db7-1232b1158827.png) AP50:95 / AP50 - FPS (Tesla V100) Paper: https://arxiv.org/abs/2004.10934 |
44+
| ![Darknet Logo](http://pjreddie.com/media/files/darknet-black-small.png) |   ![readme](https://user-images.githubusercontent.com/4096485/80213782-5f1e3480-8642-11ea-8fdf-0e6b9a6b5f4c.png) AP50:95 / AP50 - FPS (Tesla V100) Paper: https://arxiv.org/abs/2004.10934 |
4545
|---|---|
4646

47-
* Yolo v4 Full comparison: [map_fps](https://user-images.githubusercontent.com/4096485/80163825-061db480-85e0-11ea-9ff9-13c7143789cb.png)
47+
* Yolo v4 Full comparison: [map_fps](https://user-images.githubusercontent.com/4096485/80213824-6e9d7d80-8642-11ea-94a6-0be90c7d7cd5.png)
4848
* CSPNet: [map_fps](https://user-images.githubusercontent.com/4096485/71702416-6645dc00-2de0-11ea-8d65-de7d4b604021.png) [paper](https://arxiv.org/abs/1911.11929) Comparison: https://github.com/WongKinYiu/CrossStagePartialNetworks
4949
* Yolo v3 on MS COCO: [Speed / Accuracy ([email protected]) chart](https://user-images.githubusercontent.com/4096485/52151356-e5d4a380-2683-11e9-9d7d-ac7bc192c477.jpg)
5050
* Yolo v3 on MS COCO (Yolo v3 vs RetinaNet) - Figure 3: https://arxiv.org/pdf/1804.02767v1.pdf
5151
* Yolo v2 on Pascal VOC 2007: https://hsto.org/files/a24/21e/068/a2421e0689fb43f08584de9d44c2215f.jpg
5252
* Yolo v2 on Pascal VOC 2012 (comp4): https://hsto.org/files/3a6/fdf/b53/3a6fdfb533f34cee9b52bdd9bb0b19d9.jpg
5353

54+
#### How to evaluate AP of YOLOv4 on the MS COCO evaluation server
55+
56+
1. Download and unzip test-dev2017 dataset from MS COCO server: http://images.cocodataset.org/zips/test2017.zip
57+
2. Download list of images for Detection taks and replace the paths with yours: https://raw.githubusercontent.com/AlexeyAB/darknet/master/scripts/testdev2017.txt
58+
3. Download `yolov4.weights` file: https://drive.google.com/open?id=1cewMfusmPjYWbrnuJRuKhPMwRe_b9PaT
59+
4. Content of the file `cfg/coco.data` should be
60+
```
61+
classes= 80
62+
train = <replace with your path>/trainvalno5k.txt
63+
valid = <replace with your path>/testdev2017.txt
64+
names = data/coco.names
65+
backup = backup
66+
eval=coco
67+
```
68+
5. Create `/results/` folder near with `./darknet` executable file
69+
6. Run validation: `./darknet detector valid cfg/coco.data cfg/yolov4.cfg yolov4.weights`
70+
7. Rename the file `/results/coco_results.json` to `detections_test-dev2017_yolov4_results.json` and compress it to `detections_test-dev2017_yolov4_results.zip`
71+
8. Submit file `detections_test-dev2017_yolov4_results.zip` to the MS COCO evaluation server for the `test-dev2019 (bbox)`
72+
73+
#### How to evaluate FPS of YOLOv4 on GPU
74+
75+
1. Compile Darknet with `GPU=1 CUDNN=1 CUDNN_HALF=1 OPENCV=1` in the `Makefile` (or use the same settings with Cmake)
76+
2. Download `yolov4.weights` file: https://drive.google.com/open?id=1cewMfusmPjYWbrnuJRuKhPMwRe_b9PaT
77+
3. Get any .avi/.mp4 video file (preferably not more than 1920x1080 to avoid bottlenecks in CPU performance)
78+
4. Run one of two commands and look at the AVG FPS:
79+
* include video_capturing + NMS + drawing_bboxes:
80+
`./darknet detector demo cfg/coco.data cfg/yolov4.cfg yolov4.weights test.mp4 -dont_show -ext_output`
81+
* exclude video_capturing + NMS + drawing_bboxes:
82+
`./darknet detector demo cfg/coco.data cfg/yolov4.cfg yolov4.weights test.mp4 -benchmark`
83+
5484
#### Pre-trained models
5585

5686
There are weights-file for different cfg-files (trained for MS COCO dataset):

0 commit comments

Comments
 (0)