You signed in with another tab or window. Reload to refresh your session.You signed out in another tab or window. Reload to refresh your session.You switched accounts on another tab or window. Reload to refresh your session.Dismiss alert
* Yolo v3 on MS COCO: [Speed / Accuracy ([email protected]) chart](https://user-images.githubusercontent.com/4096485/52151356-e5d4a380-2683-11e9-9d7d-ac7bc192c477.jpg)
50
50
* Yolo v3 on MS COCO (Yolo v3 vs RetinaNet) - Figure 3: https://arxiv.org/pdf/1804.02767v1.pdf
51
51
* Yolo v2 on Pascal VOC 2007: https://hsto.org/files/a24/21e/068/a2421e0689fb43f08584de9d44c2215f.jpg
52
52
* Yolo v2 on Pascal VOC 2012 (comp4): https://hsto.org/files/3a6/fdf/b53/3a6fdfb533f34cee9b52bdd9bb0b19d9.jpg
53
53
54
+
#### How to evaluate AP of YOLOv4 on the MS COCO evaluation server
55
+
56
+
1. Download and unzip test-dev2017 dataset from MS COCO server: http://images.cocodataset.org/zips/test2017.zip
57
+
2. Download list of images for Detection taks and replace the paths with yours: https://raw.githubusercontent.com/AlexeyAB/darknet/master/scripts/testdev2017.txt
5. Create `/results/` folder near with `./darknet` executable file
69
+
6. Run validation: `./darknet detector valid cfg/coco.data cfg/yolov4.cfg yolov4.weights`
70
+
7. Rename the file `/results/coco_results.json` to `detections_test-dev2017_yolov4_results.json` and compress it to `detections_test-dev2017_yolov4_results.zip`
71
+
8. Submit file `detections_test-dev2017_yolov4_results.zip` to the MS COCO evaluation server for the `test-dev2019 (bbox)`
72
+
73
+
#### How to evaluate FPS of YOLOv4 on GPU
74
+
75
+
1. Compile Darknet with `GPU=1 CUDNN=1 CUDNN_HALF=1 OPENCV=1` in the `Makefile` (or use the same settings with Cmake)
0 commit comments