-
Notifications
You must be signed in to change notification settings - Fork 32
Description
[rank0:INFO|finetune.py:327] 2025-01-07 18:36:21,918 >> Trainable parameter count : 7013158912 (local rank), 7013158912 (all).
Frozen parameter count : 0 (local rank), 0 (all).
/home/zengshuang.zs/anaconda3/envs/mgpt/lib/python3.10/site-packages/torch/distributed/fsdp/_init_utils.py:444: UserWarning: FSDP is switching to use NO_SHARD
instead of ShardingStrategy.FULL_SHARD since the world size is 1.
warnings.warn(
apply gradient checkpointing
[rank0:INFO|finetune.py:360] 2025-01-07 18:36:32,541 >> Wrapped model:
FullyShardedDataParallel(
(_fsdp_wrapped_module): ChameleonXLLMXForConditionalGeneration(
(model): ChameleonModel(
(embed_tokens): FullyShardedDataParallel(
(_fsdp_wrapped_module): Embedding(65536, 4096)
)
(layers): ModuleList(
(0-31): 32 x FullyShardedDataParallel(
(_fsdp_wrapped_module): CheckpointWrapper(
(_checkpoint_wrapped_module): ChameleonDecoderLayer(
(self_attn): ChameleonSdpaAttention(
(q_proj): Linear(in_features=4096, out_features=4096, bias=False)
(k_proj): Linear(in_features=4096, out_features=4096, bias=False)
(v_proj): Linear(in_features=4096, out_features=4096, bias=False)
(o_proj): Linear(in_features=4096, out_features=4096, bias=False)
(q_norm): ChameleonLayerNorm((128,), eps=1e-05, elementwise_affine=True)
(k_norm): ChameleonLayerNorm((128,), eps=1e-05, elementwise_affine=True)
(rotary_emb): ChameleonRotaryEmbedding()
)
(mlp): ChameleonMLP(
(gate_proj): Linear(in_features=4096, out_features=11008, bias=False)
(up_proj): Linear(in_features=4096, out_features=11008, bias=False)
(down_proj): Linear(in_features=11008, out_features=4096, bias=False)
(act_fn): SiLU()
)
(input_layernorm): ChameleonRMSNorm((4096,), eps=1e-05)
(post_attention_layernorm): ChameleonRMSNorm((4096,), eps=1e-05)
(dropout): Dropout(p=0.05, inplace=False)
)
)
)
)
(norm): ChameleonRMSNorm((4096,), eps=1e-05)
)
(lm_head): FullyShardedDataParallel(
(_fsdp_wrapped_module): Linear(in_features=4096, out_features=65536, bias=False)
)
)
)
[rank0:INFO|finetune.py:421] 2025-01-07 18:36:32,544 >> effective batch size: 1
[rank0:INFO|dataset.py:27] 2025-01-07 18:36:32,544 >> read dataset config from configs/data/sample.yaml
[rank0:INFO|dataset.py:30] 2025-01-07 18:36:32,545 >> DATASET CONFIG:
[rank0:INFO|dataset.py:31] 2025-01-07 18:36:32,545 >> {'META': [{'path': '/home/zengshuang.zs/Lumina-mGPT/lumina_mgpt/data/single_image/record.json'}]}
/home/zengshuang.zs/Lumina-mGPT/xllmx/data/dataset.py:101: UserWarning: Use existing h5 data cache: xllmx_data_cache/configs-data-sample-yaml
Note: if the actual data defined by the data config has changed since your last run, please delete the cache manually and re-run this experiment, or the data actually used will not be updated
warnings.warn(
[rank0:INFO|finetune.py:423] 2025-01-07 18:36:32,551 >> <xllmx.data.dataset.FinetuneConversationDataset object at 0x7fd853992020>
[rank0:INFO|finetune.py:510] 2025-01-07 18:36:32,703 >> Start training for 2 epochs
/home/zengshuang.zs/Lumina-mGPT/xllmx/solvers/finetune/finetune.py:588: FutureWarning: torch.cuda.amp.autocast(args...)
is deprecated. Please use torch.amp.autocast('cuda', args...)
instead.
"bf16": torch.cuda.amp.autocast(dtype=torch.bfloat16),
/home/zengshuang.zs/Lumina-mGPT/xllmx/solvers/finetune/finetune.py:589: FutureWarning: torch.cuda.amp.autocast(args...)
is deprecated. Please use torch.amp.autocast('cuda', args...)
instead.
"fp16": torch.cuda.amp.autocast(dtype=torch.float16),
[rank0:ERROR|finetune.py:600] 2025-01-07 18:36:35,360 >> Loss is nan, stopping training
[rank0]:[W107 18:36:35.138718050 ProcessGroupNCCL.cpp:1250] Warning: WARNING: process group has NOT been destroyed before we destruct ProcessGroupNCCL. On normal program exit, the application should call destroy_process_group to ensure that any pending NCCL operations have finished in this process. In rare cases this process can exit before this point and block the progress of another member of the process group. This constraint has always been present, but this warning has only been added since PyTorch 2.4 (function operator())