-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathSuperLearn.py
76 lines (63 loc) · 2.25 KB
/
SuperLearn.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
from pylab import zeros, sin, cos, normal, random
from Tilecoder import numTilings, tilecode
import numpy as np
n = 11 * 11 * numTilings # initialize the total number of tiles across all tilings here
theta = np.zeros(n) # initialize weights appropriately here
alpha = 0.1 / numTilings # initialize step size parameter appropriately here
tileIndices = [-1] * numTilings # initialize your list of tile indices here
def f(in1, in2):
# write your linear function approximator here (5 lines or so)
tilecode(in1,in2,tileIndices)
return np.sum(np.array([theta[i] for i in tileIndices]))
def learn(in1, in2, target):
# write your gradient descent learning algorithm here (3 lines or so)
estimatedFunctionValue = f(in1,in2)
for i in tileIndices:
theta[i] = theta[i] + alpha * (target - estimatedFunctionValue)
def test1():
for in1, in2, target in \
[ (0.1, 0.1, 3.0), \
(4.0, 2.0, -1.0), \
(5.99, 5.99, 2.0), \
(4.0, 2.1, -1.0) ]:
before = f(in1, in2)
learn(in1,in2, target)
after = f(in1, in2)
print('Example (', in1, ',', in2, ',', target, '):', end=' ')
print(' f before learning: ', before, end=' ')
print(' f after learning : ', after)
def targetFunction(in1, in2):
return sin(in1 - 3.0) * cos(in2) + normal(0, 0.1)
def train(numSteps):
for i in range(numSteps):
in1 = random() * 6.0
in2 = random() * 6.0
target = targetFunction(in1, in2)
learn(in1, in2, target)
def writeF(filename):
fout = open(filename, 'w')
steps = 50
for i in range(steps):
for j in range(steps):
target = f(i * 6.0 / steps, j * 6.0 / steps)
fout.write(repr(target) + ' ')
fout.write('\n')
fout.close()
def MSE(sampleSize):
totalSE = 0.0
for i in range(sampleSize):
in1 = random() * 6.0
in2 = random() * 6.0
error = targetFunction(in1, in2) - f(in1, in2)
totalSE = totalSE + error * error
print('The estimated MSE: ', (totalSE / sampleSize))
def test2():
train(20)
writeF('f20')
MSE(10000)
for i in range(10):
train(1000)
MSE(10000)
writeF('f10000')
if __name__ == '__main__':
test1()