-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtrain_yolo.py
190 lines (153 loc) · 6.92 KB
/
train_yolo.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
import os
import sys
import numpy as np
from yolov3 import *
import keras.backend as K
from keras.layers import Input, Lambda
from keras.models import load_model, Model
from keras.callbacks import TensorBoard, ModelCheckpoint, EarlyStopping
from PIL import Image
# Default anchor boxes
YOLO_ANCHORS = np.array(((10,13), (16,30), (33,23), (30,61),
(62,45), (59,119), (116,90), (156,198), (373,326)))
def _main():
label_path = '../datacleaning/labels/'
data_path = '../datacleaning/images/'
output_path = '../model_data/my_yolo.h5'
log_dir = '../logs/000/'
classes_path = 'tool_classes.txt'
anchors_path = 'yolo_anchors.txt'
class_names = get_classes(classes_path)
anchors = get_anchors(anchors_path)
input_shape = (416,416) # multiple of 32
image_data, box_data = get_training_data(label_path, data_path, input_shape, max_boxes=100, load_previous=False)
y_true = preprocess_true_boxes(box_data, input_shape, anchors, len(class_names))
infer_model, model = create_model(input_shape, anchors, len(class_names), load_pretrained=True, freeze_body=True)
train(model, image_data/255., y_true, log_dir=log_dir)
infer_model.save(output_path)
def get_classes(classes_path):
'''loads the classes'''
with open(classes_path) as f:
class_names = f.readlines()
class_names = [c.strip() for c in class_names]
return class_names
def get_anchors(anchors_path):
'''loads the anchors from a file'''
if os.path.isfile(anchors_path):
with open(anchors_path) as f:
anchors = f.readline()
anchors = [float(x) for x in anchors.split(',')]
return np.array(anchors).reshape(-1, 2)
else:
Warning("Could not open anchors file, using default.")
return YOLO_ANCHORS
def get_training_data(annotation_path, data_path, input_shape, max_boxes=100, load_previous=False):
'''processes the data into standard shape
annotation row format: image_file_path box1 box2 ... boxN
box format: x_min,y_min,x_max,y_max,class_index (no space)
'''
if load_previous==True and os.path.isfile(data_path):
data = np.load(data_path)
print('Loading training data from ' + data_path)
return data['image_data'], data['box_data']
image_data = []
box_data = []
'''
with open(annotation_path) as f:
for line in f.readlines():
line = line.split(' ')
filename = line[0]
image = Image.open(filename)
boxed_image = letterbox_image(image, tuple(reversed(input_shape)))
image_data.append(np.array(boxed_image,dtype='uint8'))
boxes = np.zeros((max_boxes,5), dtype='int32')
for i, box in enumerate(line[1:]):
if i < max_boxes:
boxes[i] = np.array(list(map(int,box.split(','))))
else:
break
image_size = np.array(image.size)
input_size = np.array(input_shape[::-1])
new_size = (image_size * np.min(input_size/image_size)).astype('int32')
boxes[:i+1, 0:2] = (boxes[:i+1, 0:2]*new_size/image_size + (input_size-new_size)/2).astype('int32')
boxes[:i+1, 2:4] = (boxes[:i+1, 2:4]*new_size/image_size + (input_size-new_size)/2).astype('int32')
box_data.append(boxes)
image_data = np.array(image_data)
box_data = np.array(box_data)
np.savez(data_path, image_data=image_data, box_data=box_data)
print('Saving training data into ' + data_path)
return image_data, box_data
'''
data_path = os.path.abspath('../data/')
dir_labels = os.path.abspath('../datacleaning/labels/')
dir_images = os.path.abspath('../datacleaning/images/')
count = 0
#max_boxes = 20
image_data = []
box_data = []
for label in os.listdir(dir_labels):
if count < 6:
#print(dir_labels)
filename = dir_images + '/' + label.rsplit('.', 1)[0]+'.png'
print(filename)
if os.path.isfile(filename) is False:
continue
image = Image.open(filename)
image_data.append(np.array(image, dtype='uint8'))
with open(dir_labels + '/' + label) as l:
for line in l.readlines():
line = line.strip().split(' ')
line.append(line.pop(0))
#print(line)
box_data.append(line)
count = count + 1
image_data = np.array(image_data)
box_data = np.array(box_data)
np.savez(data_path, image_data=image_data, box_data=box_data)
print('Saving training data into ' + data_path)
print(box_data.shape)
return image_data, box_data
def create_model(input_shape, anchors, num_classes, load_pretrained=True, freeze_body=True):
'''create the training model'''
image_input = Input(shape=(None, None, 3))
h, w = input_shape
num_anchors = len(anchors)//3
y_true = [Input(shape=(h//32, w//32, num_anchors, num_classes+5)),
Input(shape=(h//16, w//16, num_anchors, num_classes+5)),
Input(shape=(h//8, w//8, num_anchors, num_classes+5))]
model_body = yolo_body(image_input, num_anchors, num_classes)
if load_pretrained:
weights_path = os.path.join('../model_data', 'yolo.h5')
if not os.path.exists(weights_path):
print("CREATING WEIGHTS FILE" + weights_path)
yolo_path = os.path.join('../model_data', 'yolo.h5')
model_body = load_model(yolo_path, compile=False)
model_body.save_weights(weights_path)
model_body.load_weights(weights_path, by_name=True, skip_mismatch=True)
if freeze_body:
# Do not freeze 3 output layers.
for i in range(len(model_body.layers)-3):
model_body.layers[i].trainable = False
model_loss = Lambda(yolo_loss, output_shape=(1,), name='yolo_loss',
arguments={'anchors': anchors, 'num_classes': num_classes})([*model_body.output, *y_true])
model = Model([model_body.input, *y_true], model_loss)
return model_body, model
def train(model, image_data, y_true, log_dir='../logs/'):
'''retrain/fine-tune the model'''
model.compile(optimizer='adam', loss={
# use custom yolo_loss Lambda layer.
'yolo_loss': lambda y_true, y_pred: y_pred})
logging = TensorBoard(log_dir=log_dir)
checkpoint = ModelCheckpoint(log_dir + "ep{epoch:03d}-loss{loss:.3f}-val_loss{val_loss:.3f}.h5",
monitor='val_loss', save_weights_only=True, save_best_only=True)
early_stopping = EarlyStopping(monitor='val_loss', min_delta=0, patience=5, verbose=1, mode='auto')
model.fit([image_data, *y_true],
np.zeros(len(image_data)),
validation_split=.1,
batch_size=2,
epochs=10,
callbacks=[logging, checkpoint, early_stopping])
model.save_weights(log_dir + 'trained_weights.h5')
# Further training.
if __name__ == '__main__':
_main()