-
Notifications
You must be signed in to change notification settings - Fork 62
/
Copy pathsequence_classification.py
343 lines (296 loc) · 13 KB
/
sequence_classification.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
# Copyright 2022 MosaicML Examples authors
# SPDX-License-Identifier: Apache-2.0
"""A starter script for fine-tuning a BERT model on your own dataset."""
import os
import sys
from typing import Optional, cast
# Add folder root to path to allow us to use relative imports regardless of what directory the script is run from
sys.path.append(os.path.dirname(os.path.realpath(__file__)))
import src.evals.data as data_module
import src.hf_bert as hf_bert_module
import src.mosaic_bert as mosaic_bert_module
import src.flex_bert as flex_bert_module
import transformers
from composer import Trainer, algorithms, Evaluator
from composer.callbacks import LRMonitor, MemoryMonitor, OptimizerMonitor, RuntimeEstimator, SpeedMonitor
from composer.core.types import Dataset
from composer.loggers import WandBLogger
from composer.optim import DecoupledAdamW
from composer.optim.scheduler import (
ConstantWithWarmupScheduler,
CosineAnnealingWithWarmupScheduler,
LinearWithWarmupScheduler,
)
from src.scheduler import WarmupStableDecayScheduler
from composer.utils import dist, reproducibility
from omegaconf import DictConfig
from omegaconf import OmegaConf as om
from torch.utils.data import DataLoader
def update_batch_size_info(cfg: DictConfig):
global_batch_size, device_microbatch_size = cfg.global_train_batch_size, cfg.device_train_microbatch_size
if global_batch_size % dist.get_world_size() != 0:
raise ValueError(
f"Global batch size {global_batch_size} is not divisible by {dist.get_world_size()} "
"as a result, the batch size would be truncated, please adjust `global_batch_size` "
f"to be divisible by world size, {dist.get_world_size()}."
)
device_train_batch_size = global_batch_size // dist.get_world_size()
if isinstance(device_microbatch_size, int):
if device_microbatch_size > device_train_batch_size:
print(
f"WARNING: device_train_microbatch_size > device_train_batch_size, "
f"will be reduced from {device_microbatch_size} -> {device_train_batch_size}."
)
device_microbatch_size = device_train_batch_size
cfg.n_gpus = dist.get_world_size()
cfg.device_train_batch_size = device_train_batch_size
cfg.device_train_microbatch_size = device_microbatch_size
# Safely set `device_eval_microbatch_size` if not provided by user
if "device_eval_microbatch_size" not in cfg:
if cfg.device_train_microbatch_size == "auto":
cfg.device_eval_microbatch_size = 1
else:
cfg.device_eval_microbatch_size = cfg.device_train_microbatch_size
global_eval_batch_size, device_eval_microbatch_size = (
cfg.get("global_eval_batch_size", global_batch_size),
cfg.device_eval_microbatch_size,
)
device_eval_batch_size = global_eval_batch_size // dist.get_world_size()
if isinstance(device_eval_microbatch_size, int):
if device_eval_microbatch_size > device_eval_microbatch_size:
print(
f"WARNING: device_eval_microbatch_size > device_eval_batch_size, "
f"will be reduced from {device_eval_microbatch_size} -> {device_eval_batch_size}."
)
device_eval_microbatch_size = device_eval_batch_size
cfg.device_eval_batch_size = device_eval_batch_size
cfg.device_eval_microbatch_size = device_eval_microbatch_size
return cfg
def log_config(cfg: DictConfig):
print(om.to_yaml(cfg))
if "wandb" in cfg.get("loggers", {}):
try:
import wandb
except ImportError as e:
raise e
if wandb.run:
wandb.config.update(om.to_container(cfg, resolve=True))
def build_algorithm(name, kwargs):
if name == "gradient_clipping":
return algorithms.GradientClipping(**kwargs)
elif name == "alibi":
return algorithms.Alibi(**kwargs)
elif name == "gated_linear_units":
return algorithms.GatedLinearUnits(**kwargs)
else:
raise ValueError(f"Not sure how to build algorithm: {name}")
def build_callback(name, kwargs):
if name == "lr_monitor":
return LRMonitor()
elif name == "memory_monitor":
return MemoryMonitor()
elif name == "speed_monitor":
return SpeedMonitor(
window_size=kwargs.get("window_size", 1), gpu_flops_available=kwargs.get("gpu_flops_available", None)
)
elif name == "runtime_estimator":
return RuntimeEstimator()
elif name == "optimizer_monitor":
return OptimizerMonitor(
log_optimizer_metrics=kwargs.get("log_optimizer_metrics", True),
)
else:
raise ValueError(f"Not sure how to build callback: {name}")
def build_logger(name, kwargs):
if name == "wandb":
return WandBLogger(**kwargs)
else:
raise ValueError(f"Not sure how to build logger: {name}")
def build_scheduler(cfg):
if cfg.name == "constant_with_warmup":
return ConstantWithWarmupScheduler(t_warmup=cfg.t_warmup)
elif cfg.name == "cosine_with_warmup":
return CosineAnnealingWithWarmupScheduler(t_warmup=cfg.t_warmup, alpha_f=cfg.alpha_f)
elif cfg.name == "linear_decay_with_warmup":
return LinearWithWarmupScheduler(t_warmup=cfg.t_warmup, alpha_f=cfg.alpha_f)
elif cfg.name == "warmup_stable_decay":
return WarmupStableDecayScheduler(t_warmup=cfg.t_warmup, alpha_f=cfg.alpha_f)
else:
raise ValueError(f"Not sure how to build scheduler: {cfg.name}")
def build_optimizer(cfg, model):
if cfg.name == "decoupled_adamw":
return DecoupledAdamW(
model.parameters(), lr=cfg.lr, betas=cfg.betas, eps=cfg.eps, weight_decay=cfg.weight_decay
)
else:
raise ValueError(f"Not sure how to build optimizer: {cfg.name}")
def build_my_dataloader(cfg: DictConfig, device_batch_size: int):
"""Create a dataloader for classification.
**Modify this function to train on your own dataset!**
This function is provided as a starter code to simplify fine-tuning a BERT
classifier on your dataset. We'll use the dataset for QNLI (one of the
GLUE tasks) as a demonstration.
Args:
cfg (DictConfig): An omegaconf config that houses all the configuration
variables needed to instruct dataset/dataloader creation.
device_batch_size (int): The size of the batches that the dataloader
should produce.
Returns:
dataloader: A dataloader set up for use of the Composer Trainer.
"""
# As a demonstration, we're using the QNLI dataset from the GLUE suite
# of tasks.
#
# Note: We create our dataset using the `data_module.create_glue_dataset` utility
# defined in `./src/glue/data.py`. If you inspect that code, you'll see
# that we're taking some extra steps so that our dataset yields examples
# that follow a particular format. In particular, the raw text is
# tokenized and some of the data columns are removed. The result is that
# each example is a dictionary with the following:
#
# - 'input_ids': the tokenized raw text
# - 'label': the target class that the text belongs to
# - 'attention_mask': a list of 1s and 0s to indicate padding
#
# When you set up your own dataset, it should handle tokenization to yield
# examples with a similar structure!
#
# REPLACE THIS WITH YOUR OWN DATASET:
dataset = data_module.create_glue_dataset(
task="qnli",
split=cfg.split,
tokenizer_name=cfg.tokenizer_name,
max_seq_length=cfg.max_seq_len,
)
dataset = cast(Dataset, dataset)
dataloader = DataLoader(
dataset,
# As an alternative to formatting the examples inside the dataloader,
# you can write a custom data collator to do that instead.
collate_fn=transformers.default_data_collator,
batch_size=device_batch_size,
sampler=dist.get_sampler(dataset, drop_last=cfg.drop_last, shuffle=cfg.shuffle),
num_workers=cfg.num_workers,
pin_memory=cfg.get("pin_memory", True),
prefetch_factor=cfg.get("prefetch_factor", 2),
persistent_workers=cfg.get("persistent_workers", True),
timeout=cfg.get("timeout", 0),
)
return dataloader
def build_model(cfg: DictConfig):
# Note: cfg.num_labels should match the number of classes in your dataset!
if cfg.name == "hf_bert":
return hf_bert_module.create_hf_bert_classification(
num_labels=cfg.num_labels,
pretrained_model_name=cfg.pretrained_model_name,
use_pretrained=cfg.get("use_pretrained", False),
model_config=cfg.get("model_config"),
tokenizer_name=cfg.get("tokenizer_name"),
gradient_checkpointing=cfg.get("gradient_checkpointing"),
)
elif cfg.name == "mosaic_bert":
return mosaic_bert_module.create_mosaic_bert_classification(
num_labels=cfg.num_labels,
pretrained_model_name=cfg.pretrained_model_name,
pretrained_checkpoint=cfg.get("pretrained_checkpoint"),
model_config=cfg.get("model_config"),
tokenizer_name=cfg.get("tokenizer_name"),
gradient_checkpointing=cfg.get("gradient_checkpointing"),
)
elif cfg.name == "flex_bert":
return flex_bert_module.create_flex_bert_classification(
num_labels=cfg.num_labels,
pretrained_model_name=cfg.pretrained_model_name,
pretrained_checkpoint=cfg.get("pretrained_checkpoint"),
model_config=cfg.get("model_config"),
tokenizer_name=cfg.get("tokenizer_name"),
gradient_checkpointing=cfg.get("gradient_checkpointing"),
)
else:
raise ValueError(f"Not sure how to build model with name={cfg.name}")
def train(cfg: DictConfig, return_trainer: bool = False, do_train: bool = True) -> Optional[Trainer]:
print("Training using config: ")
print(om.to_yaml(cfg))
reproducibility.seed_all(cfg.seed)
# Get batch size info
cfg = update_batch_size_info(cfg)
# Build Model
print("Initializing model...")
model = build_model(cfg.model)
n_params = sum(p.numel() for p in model.parameters())
print(f"{n_params=:.4e}")
# Dataloaders
print("Building train loader...")
train_loader = build_my_dataloader(
cfg.train_loader,
cfg.global_train_batch_size // dist.get_world_size(),
)
print("Building eval loader...")
global_eval_batch_size = cfg.get("global_eval_batch_size", cfg.global_train_batch_size)
eval_loader = build_my_dataloader(
cfg.eval_loader,
cfg.get("device_eval_batch_size", global_eval_batch_size // dist.get_world_size()),
)
eval_evaluator = Evaluator(
label="eval",
dataloader=eval_loader,
device_eval_microbatch_size=cfg.get("device_eval_microbatch_size", None),
)
# Optimizer
optimizer = build_optimizer(cfg.optimizer, model)
# Scheduler
scheduler = build_scheduler(cfg.scheduler)
# Loggers
loggers = [build_logger(name, logger_cfg) for name, logger_cfg in cfg.get("loggers", {}).items()]
# Callbacks
callbacks = [build_callback(name, callback_cfg) for name, callback_cfg in cfg.get("callbacks", {}).items()]
# Algorithms
algorithms = [build_algorithm(name, algorithm_cfg) for name, algorithm_cfg in cfg.get("algorithms", {}).items()]
if cfg.get("run_name") is None:
cfg.run_name = os.environ.get("COMPOSER_RUN_NAME", "sequence-classification")
# Build the Trainer
trainer = Trainer(
run_name=cfg.run_name,
seed=cfg.seed,
model=model,
algorithms=algorithms,
train_dataloader=train_loader,
eval_dataloader=eval_evaluator,
train_subset_num_batches=cfg.get("train_subset_num_batches", -1),
eval_subset_num_batches=cfg.get("eval_subset_num_batches", -1),
optimizers=optimizer,
schedulers=scheduler,
max_duration=cfg.max_duration,
eval_interval=cfg.eval_interval,
progress_bar=cfg.progress_bar,
log_to_console=cfg.log_to_console,
console_log_interval=cfg.console_log_interval,
loggers=loggers,
callbacks=callbacks,
precision=cfg.precision,
device=cfg.get("device"),
device_train_microbatch_size=cfg.get("device_train_microbatch_size", "auto"),
save_folder=cfg.get("save_folder"),
save_interval=cfg.get("save_interval", "1000ba"),
save_num_checkpoints_to_keep=cfg.get("save_num_checkpoints_to_keep", -1),
save_overwrite=cfg.get("save_overwrite", False),
load_path=cfg.get("load_path"),
load_weights_only=True,
)
print("Logging config...")
log_config(cfg)
if do_train:
print("Starting training...")
trainer.fit()
if return_trainer:
return trainer
if __name__ == "__main__":
yaml_path, args_list = sys.argv[1], sys.argv[2:]
with open("yamls/defaults.yaml") as f:
default_cfg = om.load(f)
with open(yaml_path) as f:
yaml_cfg = om.load(f)
cli_cfg = om.from_cli(args_list)
cfg = om.merge(default_cfg, yaml_cfg, cli_cfg)
cfg = cast(DictConfig, cfg) # for type checking
train(cfg)