-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathneural_network_functions.py
336 lines (245 loc) · 12.5 KB
/
neural_network_functions.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
#auxiliary functions used for the training and testing of our neural netwrok model
import os,shutil
os.environ['TF_CPP_MIN_LOG_LEVEL'] = '3'
from keras import optimizers
from keras import models
from keras import layers
from keras.models import Model
from keras.layers import Conv2D, MaxPooling2D, Input, Flatten, Dropout, Dense
from keras import regularizers
from keras.preprocessing.image import ImageDataGenerator
from keras.constraints import max_norm
import numpy as np
from keras.callbacks import EarlyStopping, ModelCheckpoint
#paths required for label manipulation
path_labels_dir = "./labelsCSV" #path to the labels directory
labels = path_labels_dir + "/labelsM.csv" #all the angles have the same labels (L,M,R)
#useful counters
source_size = 0
target_size = 0
validation_size = 0
def get_base_dirs(pkudir):
"""
-----------------------------------------------------
this function returns our base directories
-----------------------------------------------------
"""
directory_to_use = pkudir
source_dir = os.path.join(directory_to_use, 'source') #source directory to be used for training
validation_dir = os.path.join(directory_to_use, 'validation') #directory to be used for validation purposes
target_dir = os.path.join(directory_to_use, 'target') #directory to be used for testing purposes
return source_dir,validation_dir,target_dir
#local base directory creation
def __create_base_dirs(dirname,processed_actions):
"""
-----------------------------------------------------
this function creates our base directories
-----------------------------------------------------
"""
os.mkdir(dirname)
for i in processed_actions:
source_class_dirs = os.path.join(dirname, str(i)+'_action')
if os.path.exists(source_class_dirs) == False:
os.mkdir(source_class_dirs)
else:
shutil.rmtree(source_class_dirs)
os.mkdir(source_class_dirs)
def make_base(processed_actions,pkudir):
"""
--------------------------------------------------------------------------
this function creates the directory containing the source and target data
within this directory there exist directories corresponding to each one of the action classes
--------------------------------------------------------------------------
"""
directory_to_use = pkudir
if os.path.exists(directory_to_use) == False:
os.mkdir(directory_to_use)
else:
shutil.rmtree(directory_to_use)
os.mkdir(directory_to_use)
source_size=0
validation_size =0
target_size=0
#training-validation-and test directories
source_dir = os.path.join(directory_to_use, 'source') #source directory to be used for training
validation_dir = os.path.join(directory_to_use, 'validation') #directory to be used for validation purposes
target_dir = os.path.join(directory_to_use, 'target') #directory to be used for testing purposes
__create_base_dirs(source_dir,processed_actions)
__create_base_dirs(validation_dir,processed_actions)
__create_base_dirs(target_dir,processed_actions)
def make_model_functional(classes):
"""
---------------------------------------------------
this function defines our functional model
---------------------------------------------------
"""
input_image = Input(shape = (159,75,3))
first_layer_conv = Conv2D(32, (3,3),strides=(2,2), activation='relu',padding='valid',kernel_regularizer=regularizers.l2(0.001),kernel_constraint=max_norm(max_value=2))(input_image)
#first_layer_pool = MaxPooling2D((2,2), strides=(2,2), padding='valid')(first_layer_conv)
second_layer_conv = Conv2D(64, (3,3),strides=(2,2), activation='relu',padding='valid',kernel_regularizer=regularizers.l2(0.001),kernel_constraint=max_norm(max_value=2))(first_layer_conv)
#second_layer_pool = MaxPooling2D((2,2), strides=(2,2), padding='valid')(second_layer_conv)
third_layer_conv = Conv2D(128, (3,3),strides=(2,2), activation='relu',padding='valid',kernel_regularizer=regularizers.l2(0.001),kernel_constraint=max_norm(max_value=2))(second_layer_conv)
#third_layer_pool = MaxPooling2D((2,2), strides=(3,3), padding='valid')(third_layer_conv)
#flatten
flattened_layer = Flatten()(third_layer_conv)
Dropout_layer = Dropout(0.55)(flattened_layer)
Dense_layer_first = Dense(128, activation = 'relu')(Dropout_layer)
output = Dense(classes, activation = 'softmax',)(Dense_layer_first)
model = Model(inputs=input_image, outputs=output)
model.compile(loss='categorical_crossentropy',optimizer='adam',metrics=['accuracy'])
return model
def make_model_sequential(my_model,classes):
"""
---------------------------------------------------------
function that creates our model
---------------------------------------------------------
"""
my_model.add(layers.Conv2D(32, (3, 3),padding='valid',kernel_regularizer=regularizers.l2(0.001),
kernel_constraint=max_norm(max_value=2), activation='relu',input_shape=(159, 75, 3)))
my_model.add(layers.MaxPooling2D((2, 2)))
my_model.add(layers.Conv2D(64, (3, 3), activation='relu',padding='valid',kernel_regularizer=regularizers.l2(0.001),kernel_constraint=max_norm(max_value=2)))
my_model.add(layers.MaxPooling2D((2, 2)))
my_model.add(layers.Conv2D(128, (3, 3), activation='relu',padding='valid',kernel_regularizer=regularizers.l2(0.001),kernel_constraint=max_norm(max_value=2)))
my_model.add(layers.MaxPooling2D((2, 2)))
#flatten
my_model.add(layers.Flatten())
my_model.add(layers.Dropout(0.55))
my_model.add(layers.Dense(128, activation='relu'))
my_model.add(layers.Dense(classes, activation='softmax'))
my_model.compile(loss='categorical_crossentropy',optimizer='rmsprop',metrics=['accuracy'])
return my_model
def train_model(name,my_model,epochs,steps,batches,pkudir,noval=False):
"""
---------------------------------------------------------
function used to train our model
---------------------------------------------------------
"""
directory_to_use = pkudir
source_dir = os.path.join(directory_to_use, 'source') #source directory to be used for training
validation_dir = os.path.join(directory_to_use, 'validation') #directory to be used for validation purposes
target_dir = os.path.join(directory_to_use, 'target') #directory to be used for testing purposes
train_datagen = ImageDataGenerator(rescale=1./255)
test_datagen = ImageDataGenerator(rescale=1./255)
train_generator = train_datagen.flow_from_directory(source_dir,target_size=(159, 75),batch_size=batches,class_mode='categorical')
if noval==True:
early_stopping_callback = EarlyStopping(monitor='loss', patience=2)
checkpoint_callback = ModelCheckpoint(name+'.h5', monitor='loss', verbose=1, save_best_only=True, mode='min')
history = my_model.fit_generator(train_generator,steps_per_epoch=train_generator.samples/float(batches),epochs=epochs,shuffle=True,callbacks=[early_stopping_callback, checkpoint_callback])
else:
validation_generator = test_datagen.flow_from_directory(validation_dir,target_size=(159, 75),batch_size=batches,class_mode='categorical')
early_stopping_callback = EarlyStopping(monitor='val_loss', patience=2)
checkpoint_callback = ModelCheckpoint(name+'.h5', monitor='val_loss', verbose=1, save_best_only=True, mode='min')
history = my_model.fit_generator(train_generator,steps_per_epoch=train_generator.samples/float(batches),epochs=epochs,validation_data=validation_generator,validation_steps=len(validation_generator), shuffle=True,callbacks=[early_stopping_callback, checkpoint_callback])
my_model.save(name)
return my_model
def test_model(name,my_model,num,run,verbose,pkudir):
"""
-------------------------------------------------------
function use to test our model
-------------------------------------------------------
"""
directory_to_use = pkudir
source_dir = os.path.join(directory_to_use, 'source') #source directory to be used for training
validation_dir = os.path.join(directory_to_use, 'validation') #directory to be used for validation purposes
target_dir = os.path.join(directory_to_use, 'target') #directory to be used for testing purposes
test_datagen = ImageDataGenerator(rescale=1./255)
test_generator = test_datagen.flow_from_directory(target_dir,target_size=(159, 75),batch_size=32,class_mode='categorical')
test_loss, test_acc = my_model.evaluate_generator(test_generator, steps=test_generator.samples/float(32))
if verbose: print('test acc:', test_acc,'\ntest loss:',test_loss)
string = "log_multi_method_version51_crossubject_crossview_" +str(run)
string11="log_multi_method_version11_crossubject_crossview_" +str(run)
if num == 51 : results = open(string,"a")
else: results = open(string11,"a")
results.write("percentages for the model %s are accuracy %f , loss %f \n" % (name,test_acc,test_loss))
results.close()
def kind_of_rotation(image_name):
"""
------------------------------------------------------------
function returning the kind of rotation of the certain image
------------------------------------------------------------
"""
values = image_name.split("_")
values1 = values[4].split(".")
rotation = values1[0]
return(int(rotation))
def get_individual_accuracies(my_model,size,num,run,verbose,pkudir):
"""
----------------------------------------------------
function returning our individual model accuracies
----------------------------------------------------
"""
directory_to_use = pkudir
test_datagen = ImageDataGenerator(rescale=1./255)
test_dir = os.path.join(directory_to_use, 'target')
my_model.summary()
test_generator = test_datagen.flow_from_directory(test_dir,target_size=(159, 75),batch_size=1,class_mode='categorical')
filenames = test_generator.filenames
predict_generator = test_datagen.flow_from_directory(
test_dir,
target_size=(159, 75),
batch_size=1,
class_mode=None, # only data, no labels
shuffle=False) # keep data in same order as labels
predict_generator.reset()
predictions = my_model.predict_generator(predict_generator,verbose=1,steps=size )
predictions = np.argmax(predictions, axis=-1)
filenames = predict_generator.filenames
filenames2 = []
for f in filenames: filenames2.append(f.split("/")[1])
true_positives0deg = 0
true_positives45deg = 0
true_positives_45deg = 0
true_positives_90deg = 0
true_positives90deg = 0
label_map = list(predict_generator.class_indices.keys())
label_map_int=[]
#label_map = dict((v,k) for k,v in label_map.items())
for i in range(0,len(label_map)):
action_str = str(label_map[i])
values = action_str.split('_')
label_map_int.append(int(values[0]))
y_pred = predictions #predicted labels
y_true = predict_generator.classes #true labels
y_ground_truth = []
y_prediction = []
#total = 7151 #51
#total = 1502 #11
for i in range(0,len(y_pred)):
y_prediction.append( label_map_int[y_pred[i]] )
if verbose: print(len(y_pred),len(y_true))
for i in range(0,len(y_true)):
y_ground_truth.append( label_map_int[y_true[i]])
cc=0
for i in range(0,len(y_prediction)):
if y_prediction[i]==y_ground_truth[i]:
rot = kind_of_rotation(filenames2[i])
if rot==2: cc+=1
if(rot == 2 or rot == 1 or rot == 3 ): true_positives0deg+=1
elif(rot == 6 or rot==5 or rot==15): true_positives45deg+=1
elif(rot == 7 or rot==9 or rot==12): true_positives_45deg+=1
elif(rot==14 or rot==10 or rot==4): true_positives90deg+=1
elif(rot == 11 or rot ==8 or rot==13): true_positives_90deg+=1
if verbose:
print(cc)
print(true_positives0deg/total)
print(true_positives45deg/total)
print(true_positives_45deg/total)
print(true_positives90deg/total)
print(true_positives_90deg/total)
print(true_positives0deg)
print(true_positives45deg)
print(true_positives_45deg)
print(true_positives90deg)
print(true_positives_90deg)
string = "log_multi_method_version51_crossubject_crossview_" +str(run)
string11="log_multi_method_version11_crossubject_crossview_" +str(run)
if num == 51 : results = open(string,"a")
else: results = open(string11,"a")
results.write("---- case start -----\n")
results.write("percentages for the model 1st test are %f \n" % (true_positives0deg/total))
results.write("percentages for the model 2nd test are %f \n" % (true_positives45deg/total))
results.write("percentages for the model 3d test are %f \n" % (true_positives_45deg/total))
results.write("percentages for the model 4th test are %f \n" % (true_positives90deg/total))
results.write("percentages for the model 5th test are %f \n" % (true_positives_90deg/total))
results.write("---- case end -----\n")
results.close()