Skip to content

[Feature] LLM/AI Model Schema Support #6997

@carlesarnal

Description

@carlesarnal

Parent Epic

Part of #6991 - AI Agent Registry

Description

Add support for managing schemas related to AI/ML models, including model input/output definitions, prompt templates, and RAG pipeline configurations.

Background

As AI becomes integral to enterprise applications, there's a need to govern:

  • Model input/output schemas (what data goes in, what comes out)
  • Prompt templates and their versions
  • RAG (Retrieval-Augmented Generation) pipeline configurations
  • Feature store schemas for ML pipelines

Requirements

New Artifact Types

  1. MODEL_SCHEMA

    • Input schema definition (JSON Schema or similar)
    • Output schema definition
    • Model metadata (version, provider, capabilities)
  2. PROMPT_TEMPLATE

    • Template content with variable placeholders
    • Variable schema definition
    • Version history for prompt iteration
  3. RAG_CONFIG (optional, future)

    • Embedding model configuration
    • Vector store settings
    • Retrieval parameters

Features

  • Validation of model schemas
  • Version comparison for prompt templates
  • Compatibility checking between model versions
  • Integration with feature store schemas

Acceptance Criteria

  • MODEL_SCHEMA artifact type works end-to-end
  • PROMPT_TEMPLATE supports versioning
  • UI displays AI-related artifacts appropriately
  • Documentation covers AI schema use cases

Priority

P1 - High priority as part of AI differentiation strategy

References

Metadata

Metadata

Assignees

Type

No type

Projects

Status

In Progress

Relationships

None yet

Development

No branches or pull requests

Issue actions