forked from EdjeElectronics/TensorFlow-Object-Detection-API-Tutorial-Train-Multiple-Objects-Windows-10
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathexporter.py
656 lines (577 loc) · 27 KB
/
exporter.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
# Copyright 2017 The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
"""Functions to export object detection inference graph."""
import os
import tempfile
import tensorflow.compat.v1 as tf
import tf_slim as slim
from tensorflow.core.protobuf import saver_pb2
from tensorflow.python.tools import freeze_graph # pylint: disable=g-direct-tensorflow-import
from object_detection.builders import graph_rewriter_builder
from object_detection.builders import model_builder
from object_detection.core import standard_fields as fields
from object_detection.data_decoders import tf_example_decoder
from object_detection.utils import config_util
from object_detection.utils import shape_utils
# pylint: disable=g-import-not-at-top
try:
from tensorflow.contrib import tfprof as contrib_tfprof
from tensorflow.contrib.quantize.python import graph_matcher
except ImportError:
# TF 2.0 doesn't ship with contrib.
pass
# pylint: enable=g-import-not-at-top
freeze_graph_with_def_protos = freeze_graph.freeze_graph_with_def_protos
def parse_side_inputs(side_input_shapes_string, side_input_names_string,
side_input_types_string):
"""Parses side input flags.
Args:
side_input_shapes_string: The shape of the side input tensors, provided as a
comma-separated list of integers. A value of -1 is used for unknown
dimensions. A `/` denotes a break, starting the shape of the next side
input tensor.
side_input_names_string: The names of the side input tensors, provided as a
comma-separated list of strings.
side_input_types_string: The type of the side input tensors, provided as a
comma-separated list of types, each of `string`, `integer`, or `float`.
Returns:
side_input_shapes: A list of shapes.
side_input_names: A list of strings.
side_input_types: A list of tensorflow dtypes.
"""
if side_input_shapes_string:
side_input_shapes = []
for side_input_shape_list in side_input_shapes_string.split('/'):
side_input_shape = [
int(dim) if dim != '-1' else None
for dim in side_input_shape_list.split(',')
]
side_input_shapes.append(side_input_shape)
else:
raise ValueError('When using side_inputs, side_input_shapes must be '
'specified in the input flags.')
if side_input_names_string:
side_input_names = list(side_input_names_string.split(','))
else:
raise ValueError('When using side_inputs, side_input_names must be '
'specified in the input flags.')
if side_input_types_string:
typelookup = {'float': tf.float32, 'int': tf.int32, 'string': tf.string}
side_input_types = [
typelookup[side_input_type]
for side_input_type in side_input_types_string.split(',')
]
else:
raise ValueError('When using side_inputs, side_input_types must be '
'specified in the input flags.')
return side_input_shapes, side_input_names, side_input_types
def rewrite_nn_resize_op(is_quantized=False):
"""Replaces a custom nearest-neighbor resize op with the Tensorflow version.
Some graphs use this custom version for TPU-compatibility.
Args:
is_quantized: True if the default graph is quantized.
"""
def remove_nn():
"""Remove nearest neighbor upsampling structures and replace with TF op."""
input_pattern = graph_matcher.OpTypePattern(
'FakeQuantWithMinMaxVars' if is_quantized else '*')
stack_1_pattern = graph_matcher.OpTypePattern(
'Pack', inputs=[input_pattern, input_pattern], ordered_inputs=False)
stack_2_pattern = graph_matcher.OpTypePattern(
'Pack', inputs=[stack_1_pattern, stack_1_pattern], ordered_inputs=False)
reshape_pattern = graph_matcher.OpTypePattern(
'Reshape', inputs=[stack_2_pattern, 'Const'], ordered_inputs=False)
consumer_pattern1 = graph_matcher.OpTypePattern(
'Add|AddV2|Max|Mul', inputs=[reshape_pattern, '*'],
ordered_inputs=False)
consumer_pattern2 = graph_matcher.OpTypePattern(
'StridedSlice', inputs=[reshape_pattern, '*', '*', '*'],
ordered_inputs=False)
def replace_matches(consumer_pattern):
"""Search for nearest neighbor pattern and replace with TF op."""
match_counter = 0
matcher = graph_matcher.GraphMatcher(consumer_pattern)
for match in matcher.match_graph(tf.get_default_graph()):
match_counter += 1
projection_op = match.get_op(input_pattern)
reshape_op = match.get_op(reshape_pattern)
consumer_op = match.get_op(consumer_pattern)
nn_resize = tf.image.resize_nearest_neighbor(
projection_op.outputs[0],
reshape_op.outputs[0].shape.dims[1:3],
align_corners=False,
name=os.path.split(reshape_op.name)[0] + '/resize_nearest_neighbor')
for index, op_input in enumerate(consumer_op.inputs):
if op_input == reshape_op.outputs[0]:
consumer_op._update_input(index, nn_resize) # pylint: disable=protected-access
break
return match_counter
match_counter = replace_matches(consumer_pattern1)
match_counter += replace_matches(consumer_pattern2)
tf.logging.info('Found and fixed {} matches'.format(match_counter))
return match_counter
# Applying twice because both inputs to Add could be NN pattern
total_removals = 0
while remove_nn():
total_removals += 1
# This number is chosen based on the nas-fpn architecture.
if total_removals > 4:
raise ValueError('Graph removal encountered a infinite loop.')
def replace_variable_values_with_moving_averages(graph,
current_checkpoint_file,
new_checkpoint_file,
no_ema_collection=None):
"""Replaces variable values in the checkpoint with their moving averages.
If the current checkpoint has shadow variables maintaining moving averages of
the variables defined in the graph, this function generates a new checkpoint
where the variables contain the values of their moving averages.
Args:
graph: a tf.Graph object.
current_checkpoint_file: a checkpoint containing both original variables and
their moving averages.
new_checkpoint_file: file path to write a new checkpoint.
no_ema_collection: A list of namescope substrings to match the variables
to eliminate EMA.
"""
with graph.as_default():
variable_averages = tf.train.ExponentialMovingAverage(0.0)
ema_variables_to_restore = variable_averages.variables_to_restore()
ema_variables_to_restore = config_util.remove_unecessary_ema(
ema_variables_to_restore, no_ema_collection)
with tf.Session() as sess:
read_saver = tf.train.Saver(ema_variables_to_restore)
read_saver.restore(sess, current_checkpoint_file)
write_saver = tf.train.Saver()
write_saver.save(sess, new_checkpoint_file)
def _image_tensor_input_placeholder(input_shape=None):
"""Returns input placeholder and a 4-D uint8 image tensor."""
if input_shape is None:
input_shape = (None, None, None, 3)
input_tensor = tf.placeholder(
dtype=tf.uint8, shape=input_shape, name='image_tensor')
return input_tensor, input_tensor
def _side_input_tensor_placeholder(side_input_shape, side_input_name,
side_input_type):
"""Returns side input placeholder and side input tensor."""
side_input_tensor = tf.placeholder(
dtype=side_input_type, shape=side_input_shape, name=side_input_name)
return side_input_tensor, side_input_tensor
def _tf_example_input_placeholder(input_shape=None):
"""Returns input that accepts a batch of strings with tf examples.
Args:
input_shape: the shape to resize the output decoded images to (optional).
Returns:
a tuple of input placeholder and the output decoded images.
"""
batch_tf_example_placeholder = tf.placeholder(
tf.string, shape=[None], name='tf_example')
def decode(tf_example_string_tensor):
tensor_dict = tf_example_decoder.TfExampleDecoder().decode(
tf_example_string_tensor)
image_tensor = tensor_dict[fields.InputDataFields.image]
if input_shape is not None:
image_tensor = tf.image.resize(image_tensor, input_shape[1:3])
return image_tensor
return (batch_tf_example_placeholder,
shape_utils.static_or_dynamic_map_fn(
decode,
elems=batch_tf_example_placeholder,
dtype=tf.uint8,
parallel_iterations=32,
back_prop=False))
def _encoded_image_string_tensor_input_placeholder(input_shape=None):
"""Returns input that accepts a batch of PNG or JPEG strings.
Args:
input_shape: the shape to resize the output decoded images to (optional).
Returns:
a tuple of input placeholder and the output decoded images.
"""
batch_image_str_placeholder = tf.placeholder(
dtype=tf.string,
shape=[None],
name='encoded_image_string_tensor')
def decode(encoded_image_string_tensor):
image_tensor = tf.image.decode_image(encoded_image_string_tensor,
channels=3)
image_tensor.set_shape((None, None, 3))
if input_shape is not None:
image_tensor = tf.image.resize(image_tensor, input_shape[1:3])
return image_tensor
return (batch_image_str_placeholder,
tf.map_fn(
decode,
elems=batch_image_str_placeholder,
dtype=tf.uint8,
parallel_iterations=32,
back_prop=False))
input_placeholder_fn_map = {
'image_tensor': _image_tensor_input_placeholder,
'encoded_image_string_tensor':
_encoded_image_string_tensor_input_placeholder,
'tf_example': _tf_example_input_placeholder
}
def add_output_tensor_nodes(postprocessed_tensors,
output_collection_name='inference_op'):
"""Adds output nodes for detection boxes and scores.
Adds the following nodes for output tensors -
* num_detections: float32 tensor of shape [batch_size].
* detection_boxes: float32 tensor of shape [batch_size, num_boxes, 4]
containing detected boxes.
* detection_scores: float32 tensor of shape [batch_size, num_boxes]
containing scores for the detected boxes.
* detection_multiclass_scores: (Optional) float32 tensor of shape
[batch_size, num_boxes, num_classes_with_background] for containing class
score distribution for detected boxes including background if any.
* detection_features: (Optional) float32 tensor of shape
[batch, num_boxes, roi_height, roi_width, depth]
containing classifier features
for each detected box
* detection_classes: float32 tensor of shape [batch_size, num_boxes]
containing class predictions for the detected boxes.
* detection_keypoints: (Optional) float32 tensor of shape
[batch_size, num_boxes, num_keypoints, 2] containing keypoints for each
detection box.
* detection_masks: (Optional) float32 tensor of shape
[batch_size, num_boxes, mask_height, mask_width] containing masks for each
detection box.
Args:
postprocessed_tensors: a dictionary containing the following fields
'detection_boxes': [batch, max_detections, 4]
'detection_scores': [batch, max_detections]
'detection_multiclass_scores': [batch, max_detections,
num_classes_with_background]
'detection_features': [batch, num_boxes, roi_height, roi_width, depth]
'detection_classes': [batch, max_detections]
'detection_masks': [batch, max_detections, mask_height, mask_width]
(optional).
'detection_keypoints': [batch, max_detections, num_keypoints, 2]
(optional).
'num_detections': [batch]
output_collection_name: Name of collection to add output tensors to.
Returns:
A tensor dict containing the added output tensor nodes.
"""
detection_fields = fields.DetectionResultFields
label_id_offset = 1
boxes = postprocessed_tensors.get(detection_fields.detection_boxes)
scores = postprocessed_tensors.get(detection_fields.detection_scores)
multiclass_scores = postprocessed_tensors.get(
detection_fields.detection_multiclass_scores)
box_classifier_features = postprocessed_tensors.get(
detection_fields.detection_features)
raw_boxes = postprocessed_tensors.get(detection_fields.raw_detection_boxes)
raw_scores = postprocessed_tensors.get(detection_fields.raw_detection_scores)
classes = postprocessed_tensors.get(
detection_fields.detection_classes) + label_id_offset
keypoints = postprocessed_tensors.get(detection_fields.detection_keypoints)
masks = postprocessed_tensors.get(detection_fields.detection_masks)
num_detections = postprocessed_tensors.get(detection_fields.num_detections)
outputs = {}
outputs[detection_fields.detection_boxes] = tf.identity(
boxes, name=detection_fields.detection_boxes)
outputs[detection_fields.detection_scores] = tf.identity(
scores, name=detection_fields.detection_scores)
if multiclass_scores is not None:
outputs[detection_fields.detection_multiclass_scores] = tf.identity(
multiclass_scores, name=detection_fields.detection_multiclass_scores)
if box_classifier_features is not None:
outputs[detection_fields.detection_features] = tf.identity(
box_classifier_features,
name=detection_fields.detection_features)
outputs[detection_fields.detection_classes] = tf.identity(
classes, name=detection_fields.detection_classes)
outputs[detection_fields.num_detections] = tf.identity(
num_detections, name=detection_fields.num_detections)
if raw_boxes is not None:
outputs[detection_fields.raw_detection_boxes] = tf.identity(
raw_boxes, name=detection_fields.raw_detection_boxes)
if raw_scores is not None:
outputs[detection_fields.raw_detection_scores] = tf.identity(
raw_scores, name=detection_fields.raw_detection_scores)
if keypoints is not None:
outputs[detection_fields.detection_keypoints] = tf.identity(
keypoints, name=detection_fields.detection_keypoints)
if masks is not None:
outputs[detection_fields.detection_masks] = tf.identity(
masks, name=detection_fields.detection_masks)
for output_key in outputs:
tf.add_to_collection(output_collection_name, outputs[output_key])
return outputs
def write_saved_model(saved_model_path,
frozen_graph_def,
inputs,
outputs):
"""Writes SavedModel to disk.
If checkpoint_path is not None bakes the weights into the graph thereby
eliminating the need of checkpoint files during inference. If the model
was trained with moving averages, setting use_moving_averages to true
restores the moving averages, otherwise the original set of variables
is restored.
Args:
saved_model_path: Path to write SavedModel.
frozen_graph_def: tf.GraphDef holding frozen graph.
inputs: A tensor dictionary containing the inputs to a DetectionModel.
outputs: A tensor dictionary containing the outputs of a DetectionModel.
"""
with tf.Graph().as_default():
with tf.Session() as sess:
tf.import_graph_def(frozen_graph_def, name='')
builder = tf.saved_model.builder.SavedModelBuilder(saved_model_path)
tensor_info_inputs = {}
if isinstance(inputs, dict):
for k, v in inputs.items():
tensor_info_inputs[k] = tf.saved_model.utils.build_tensor_info(v)
else:
tensor_info_inputs['inputs'] = tf.saved_model.utils.build_tensor_info(
inputs)
tensor_info_outputs = {}
for k, v in outputs.items():
tensor_info_outputs[k] = tf.saved_model.utils.build_tensor_info(v)
detection_signature = (
tf.saved_model.signature_def_utils.build_signature_def(
inputs=tensor_info_inputs,
outputs=tensor_info_outputs,
method_name=tf.saved_model.signature_constants.PREDICT_METHOD_NAME
))
builder.add_meta_graph_and_variables(
sess,
[tf.saved_model.tag_constants.SERVING],
signature_def_map={
tf.saved_model.signature_constants
.DEFAULT_SERVING_SIGNATURE_DEF_KEY:
detection_signature,
},
)
builder.save()
def write_graph_and_checkpoint(inference_graph_def,
model_path,
input_saver_def,
trained_checkpoint_prefix):
"""Writes the graph and the checkpoint into disk."""
for node in inference_graph_def.node:
node.device = ''
with tf.Graph().as_default():
tf.import_graph_def(inference_graph_def, name='')
with tf.Session() as sess:
saver = tf.train.Saver(
saver_def=input_saver_def, save_relative_paths=True)
saver.restore(sess, trained_checkpoint_prefix)
saver.save(sess, model_path)
def _get_outputs_from_inputs(input_tensors, detection_model,
output_collection_name, **side_inputs):
inputs = tf.cast(input_tensors, dtype=tf.float32)
preprocessed_inputs, true_image_shapes = detection_model.preprocess(inputs)
output_tensors = detection_model.predict(
preprocessed_inputs, true_image_shapes, **side_inputs)
postprocessed_tensors = detection_model.postprocess(
output_tensors, true_image_shapes)
return add_output_tensor_nodes(postprocessed_tensors,
output_collection_name)
def build_detection_graph(input_type, detection_model, input_shape,
output_collection_name, graph_hook_fn,
use_side_inputs=False, side_input_shapes=None,
side_input_names=None, side_input_types=None):
"""Build the detection graph."""
if input_type not in input_placeholder_fn_map:
raise ValueError('Unknown input type: {}'.format(input_type))
placeholder_args = {}
side_inputs = {}
if input_shape is not None:
if (input_type != 'image_tensor' and
input_type != 'encoded_image_string_tensor' and
input_type != 'tf_example' and
input_type != 'tf_sequence_example'):
raise ValueError('Can only specify input shape for `image_tensor`, '
'`encoded_image_string_tensor`, `tf_example`, '
' or `tf_sequence_example` inputs.')
placeholder_args['input_shape'] = input_shape
placeholder_tensor, input_tensors = input_placeholder_fn_map[input_type](
**placeholder_args)
placeholder_tensors = {'inputs': placeholder_tensor}
if use_side_inputs:
for idx, side_input_name in enumerate(side_input_names):
side_input_placeholder, side_input = _side_input_tensor_placeholder(
side_input_shapes[idx], side_input_name, side_input_types[idx])
print(side_input)
side_inputs[side_input_name] = side_input
placeholder_tensors[side_input_name] = side_input_placeholder
outputs = _get_outputs_from_inputs(
input_tensors=input_tensors,
detection_model=detection_model,
output_collection_name=output_collection_name,
**side_inputs)
# Add global step to the graph.
slim.get_or_create_global_step()
if graph_hook_fn: graph_hook_fn()
return outputs, placeholder_tensors
def _export_inference_graph(input_type,
detection_model,
use_moving_averages,
trained_checkpoint_prefix,
output_directory,
additional_output_tensor_names=None,
input_shape=None,
output_collection_name='inference_op',
graph_hook_fn=None,
write_inference_graph=False,
temp_checkpoint_prefix='',
use_side_inputs=False,
side_input_shapes=None,
side_input_names=None,
side_input_types=None):
"""Export helper."""
tf.gfile.MakeDirs(output_directory)
frozen_graph_path = os.path.join(output_directory,
'frozen_inference_graph.pb')
saved_model_path = os.path.join(output_directory, 'saved_model')
model_path = os.path.join(output_directory, 'model.ckpt')
outputs, placeholder_tensor_dict = build_detection_graph(
input_type=input_type,
detection_model=detection_model,
input_shape=input_shape,
output_collection_name=output_collection_name,
graph_hook_fn=graph_hook_fn,
use_side_inputs=use_side_inputs,
side_input_shapes=side_input_shapes,
side_input_names=side_input_names,
side_input_types=side_input_types)
profile_inference_graph(tf.get_default_graph())
saver_kwargs = {}
if use_moving_averages:
if not temp_checkpoint_prefix:
# This check is to be compatible with both version of SaverDef.
if os.path.isfile(trained_checkpoint_prefix):
saver_kwargs['write_version'] = saver_pb2.SaverDef.V1
temp_checkpoint_prefix = tempfile.NamedTemporaryFile().name
else:
temp_checkpoint_prefix = tempfile.mkdtemp()
replace_variable_values_with_moving_averages(
tf.get_default_graph(), trained_checkpoint_prefix,
temp_checkpoint_prefix)
checkpoint_to_use = temp_checkpoint_prefix
else:
checkpoint_to_use = trained_checkpoint_prefix
saver = tf.train.Saver(**saver_kwargs)
input_saver_def = saver.as_saver_def()
write_graph_and_checkpoint(
inference_graph_def=tf.get_default_graph().as_graph_def(),
model_path=model_path,
input_saver_def=input_saver_def,
trained_checkpoint_prefix=checkpoint_to_use)
if write_inference_graph:
inference_graph_def = tf.get_default_graph().as_graph_def()
inference_graph_path = os.path.join(output_directory,
'inference_graph.pbtxt')
for node in inference_graph_def.node:
node.device = ''
with tf.gfile.GFile(inference_graph_path, 'wb') as f:
f.write(str(inference_graph_def))
if additional_output_tensor_names is not None:
output_node_names = ','.join(list(outputs.keys())+(
additional_output_tensor_names))
else:
output_node_names = ','.join(outputs.keys())
frozen_graph_def = freeze_graph.freeze_graph_with_def_protos(
input_graph_def=tf.get_default_graph().as_graph_def(),
input_saver_def=input_saver_def,
input_checkpoint=checkpoint_to_use,
output_node_names=output_node_names,
restore_op_name='save/restore_all',
filename_tensor_name='save/Const:0',
output_graph=frozen_graph_path,
clear_devices=True,
initializer_nodes='')
write_saved_model(saved_model_path, frozen_graph_def,
placeholder_tensor_dict, outputs)
def export_inference_graph(input_type,
pipeline_config,
trained_checkpoint_prefix,
output_directory,
input_shape=None,
output_collection_name='inference_op',
additional_output_tensor_names=None,
write_inference_graph=False,
use_side_inputs=False,
side_input_shapes=None,
side_input_names=None,
side_input_types=None):
"""Exports inference graph for the model specified in the pipeline config.
Args:
input_type: Type of input for the graph. Can be one of ['image_tensor',
'encoded_image_string_tensor', 'tf_example'].
pipeline_config: pipeline_pb2.TrainAndEvalPipelineConfig proto.
trained_checkpoint_prefix: Path to the trained checkpoint file.
output_directory: Path to write outputs.
input_shape: Sets a fixed shape for an `image_tensor` input. If not
specified, will default to [None, None, None, 3].
output_collection_name: Name of collection to add output tensors to.
If None, does not add output tensors to a collection.
additional_output_tensor_names: list of additional output
tensors to include in the frozen graph.
write_inference_graph: If true, writes inference graph to disk.
use_side_inputs: If True, the model requires side_inputs.
side_input_shapes: List of shapes of the side input tensors,
required if use_side_inputs is True.
side_input_names: List of names of the side input tensors,
required if use_side_inputs is True.
side_input_types: List of types of the side input tensors,
required if use_side_inputs is True.
"""
detection_model = model_builder.build(pipeline_config.model,
is_training=False)
graph_rewriter_fn = None
if pipeline_config.HasField('graph_rewriter'):
graph_rewriter_config = pipeline_config.graph_rewriter
graph_rewriter_fn = graph_rewriter_builder.build(graph_rewriter_config,
is_training=False)
_export_inference_graph(
input_type,
detection_model,
pipeline_config.eval_config.use_moving_averages,
trained_checkpoint_prefix,
output_directory,
additional_output_tensor_names,
input_shape,
output_collection_name,
graph_hook_fn=graph_rewriter_fn,
write_inference_graph=write_inference_graph,
use_side_inputs=use_side_inputs,
side_input_shapes=side_input_shapes,
side_input_names=side_input_names,
side_input_types=side_input_types)
pipeline_config.eval_config.use_moving_averages = False
config_util.save_pipeline_config(pipeline_config, output_directory)
def profile_inference_graph(graph):
"""Profiles the inference graph.
Prints model parameters and computation FLOPs given an inference graph.
BatchNorms are excluded from the parameter count due to the fact that
BatchNorms are usually folded. BatchNorm, Initializer, Regularizer
and BiasAdd are not considered in FLOP count.
Args:
graph: the inference graph.
"""
tfprof_vars_option = (
contrib_tfprof.model_analyzer.TRAINABLE_VARS_PARAMS_STAT_OPTIONS)
tfprof_flops_option = contrib_tfprof.model_analyzer.FLOAT_OPS_OPTIONS
# Batchnorm is usually folded during inference.
tfprof_vars_option['trim_name_regexes'] = ['.*BatchNorm.*']
# Initializer and Regularizer are only used in training.
tfprof_flops_option['trim_name_regexes'] = [
'.*BatchNorm.*', '.*Initializer.*', '.*Regularizer.*', '.*BiasAdd.*'
]
contrib_tfprof.model_analyzer.print_model_analysis(
graph, tfprof_options=tfprof_vars_option)
contrib_tfprof.model_analyzer.print_model_analysis(
graph, tfprof_options=tfprof_flops_option)