forked from EdjeElectronics/TensorFlow-Object-Detection-API-Tutorial-Train-Multiple-Objects-Windows-10
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathexporter_tf1_test.py
1206 lines (1110 loc) · 57.1 KB
/
exporter_tf1_test.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
# Lint as: python2, python3
# Copyright 2017 The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
"""Tests for object_detection.export_inference_graph."""
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import os
import unittest
import numpy as np
import six
import tensorflow.compat.v1 as tf
from google.protobuf import text_format
from tensorflow.python.framework import dtypes
from tensorflow.python.ops import array_ops
from tensorflow.python.tools import strip_unused_lib
from object_detection import exporter
from object_detection.builders import graph_rewriter_builder
from object_detection.builders import model_builder
from object_detection.core import model
from object_detection.protos import graph_rewriter_pb2
from object_detection.protos import pipeline_pb2
from object_detection.utils import ops
from object_detection.utils import tf_version
from object_detection.utils import variables_helper
if six.PY2:
import mock # pylint: disable=g-import-not-at-top
else:
mock = unittest.mock # pylint: disable=g-import-not-at-top, g-importing-member
# pylint: disable=g-import-not-at-top
try:
import tf_slim as slim
except ImportError:
# TF 2.0 doesn't ship with contrib.
pass
# pylint: enable=g-import-not-at-top
class FakeModel(model.DetectionModel):
def __init__(self, add_detection_keypoints=False, add_detection_masks=False,
add_detection_features=False):
self._add_detection_keypoints = add_detection_keypoints
self._add_detection_masks = add_detection_masks
self._add_detection_features = add_detection_features
def preprocess(self, inputs):
true_image_shapes = [] # Doesn't matter for the fake model.
return tf.identity(inputs), true_image_shapes
def predict(self, preprocessed_inputs, true_image_shapes):
return {'image': tf.layers.conv2d(preprocessed_inputs, 3, 1)}
def postprocess(self, prediction_dict, true_image_shapes):
with tf.control_dependencies(list(prediction_dict.values())):
postprocessed_tensors = {
'detection_boxes': tf.constant([[[0.0, 0.0, 0.5, 0.5],
[0.5, 0.5, 0.8, 0.8]],
[[0.5, 0.5, 1.0, 1.0],
[0.0, 0.0, 0.0, 0.0]]], tf.float32),
'detection_scores': tf.constant([[0.7, 0.6],
[0.9, 0.0]], tf.float32),
'detection_multiclass_scores': tf.constant([[[0.3, 0.7], [0.4, 0.6]],
[[0.1, 0.9], [0.0, 0.0]]],
tf.float32),
'detection_classes': tf.constant([[0, 1],
[1, 0]], tf.float32),
'num_detections': tf.constant([2, 1], tf.float32),
'raw_detection_boxes': tf.constant([[[0.0, 0.0, 0.5, 0.5],
[0.5, 0.5, 0.8, 0.8]],
[[0.5, 0.5, 1.0, 1.0],
[0.0, 0.5, 0.0, 0.5]]],
tf.float32),
'raw_detection_scores': tf.constant([[0.7, 0.6],
[0.9, 0.5]], tf.float32),
}
if self._add_detection_keypoints:
postprocessed_tensors['detection_keypoints'] = tf.constant(
np.arange(48).reshape([2, 2, 6, 2]), tf.float32)
if self._add_detection_masks:
postprocessed_tensors['detection_masks'] = tf.constant(
np.arange(64).reshape([2, 2, 4, 4]), tf.float32)
if self._add_detection_features:
# let fake detection features have shape [4, 4, 10]
postprocessed_tensors['detection_features'] = tf.constant(
np.ones((2, 2, 4, 4, 10)), tf.float32)
return postprocessed_tensors
def restore_map(self, checkpoint_path, fine_tune_checkpoint_type):
pass
def restore_from_objects(self, fine_tune_checkpoint_type):
pass
def loss(self, prediction_dict, true_image_shapes):
pass
def regularization_losses(self):
pass
def updates(self):
pass
@unittest.skipIf(tf_version.is_tf2(), 'Skipping TF1.X only test.')
class ExportInferenceGraphTest(tf.test.TestCase):
def _save_checkpoint_from_mock_model(self,
checkpoint_path,
use_moving_averages,
enable_quantization=False):
g = tf.Graph()
with g.as_default():
mock_model = FakeModel()
preprocessed_inputs, true_image_shapes = mock_model.preprocess(
tf.placeholder(tf.float32, shape=[None, None, None, 3]))
predictions = mock_model.predict(preprocessed_inputs, true_image_shapes)
mock_model.postprocess(predictions, true_image_shapes)
if use_moving_averages:
tf.train.ExponentialMovingAverage(0.0).apply()
tf.train.get_or_create_global_step()
if enable_quantization:
graph_rewriter_config = graph_rewriter_pb2.GraphRewriter()
graph_rewriter_config.quantization.delay = 500000
graph_rewriter_fn = graph_rewriter_builder.build(
graph_rewriter_config, is_training=False)
graph_rewriter_fn()
saver = tf.train.Saver()
init = tf.global_variables_initializer()
with self.test_session() as sess:
sess.run(init)
saver.save(sess, checkpoint_path)
def _load_inference_graph(self, inference_graph_path, is_binary=True):
od_graph = tf.Graph()
with od_graph.as_default():
od_graph_def = tf.GraphDef()
with tf.gfile.GFile(inference_graph_path, mode='rb') as fid:
if is_binary:
od_graph_def.ParseFromString(fid.read())
else:
text_format.Parse(fid.read(), od_graph_def)
tf.import_graph_def(od_graph_def, name='')
return od_graph
def _create_tf_example(self, image_array):
with self.test_session():
encoded_image = tf.image.encode_jpeg(tf.constant(image_array)).eval()
def _bytes_feature(value):
return tf.train.Feature(
bytes_list=tf.train.BytesList(value=[six.ensure_binary(value)]))
example = tf.train.Example(features=tf.train.Features(feature={
'image/encoded': _bytes_feature(encoded_image),
'image/format': _bytes_feature('jpg'),
'image/source_id': _bytes_feature('image_id')
})).SerializeToString()
return example
def test_export_graph_with_image_tensor_input(self):
tmp_dir = self.get_temp_dir()
trained_checkpoint_prefix = os.path.join(tmp_dir, 'model.ckpt')
self._save_checkpoint_from_mock_model(trained_checkpoint_prefix,
use_moving_averages=False)
with mock.patch.object(
model_builder, 'build', autospec=True) as mock_builder:
mock_builder.return_value = FakeModel()
output_directory = os.path.join(tmp_dir, 'output')
pipeline_config = pipeline_pb2.TrainEvalPipelineConfig()
pipeline_config.eval_config.use_moving_averages = False
exporter.export_inference_graph(
input_type='image_tensor',
pipeline_config=pipeline_config,
trained_checkpoint_prefix=trained_checkpoint_prefix,
output_directory=output_directory)
self.assertTrue(os.path.exists(os.path.join(
output_directory, 'saved_model', 'saved_model.pb')))
def test_write_inference_graph(self):
tmp_dir = self.get_temp_dir()
trained_checkpoint_prefix = os.path.join(tmp_dir, 'model.ckpt')
self._save_checkpoint_from_mock_model(trained_checkpoint_prefix,
use_moving_averages=False)
with mock.patch.object(
model_builder, 'build', autospec=True) as mock_builder:
mock_builder.return_value = FakeModel()
output_directory = os.path.join(tmp_dir, 'output')
pipeline_config = pipeline_pb2.TrainEvalPipelineConfig()
pipeline_config.eval_config.use_moving_averages = False
exporter.export_inference_graph(
input_type='image_tensor',
pipeline_config=pipeline_config,
trained_checkpoint_prefix=trained_checkpoint_prefix,
output_directory=output_directory,
write_inference_graph=True)
self.assertTrue(os.path.exists(os.path.join(
output_directory, 'inference_graph.pbtxt')))
def test_export_graph_with_fixed_size_image_tensor_input(self):
input_shape = [1, 320, 320, 3]
tmp_dir = self.get_temp_dir()
trained_checkpoint_prefix = os.path.join(tmp_dir, 'model.ckpt')
self._save_checkpoint_from_mock_model(
trained_checkpoint_prefix, use_moving_averages=False)
with mock.patch.object(
model_builder, 'build', autospec=True) as mock_builder:
mock_builder.return_value = FakeModel()
output_directory = os.path.join(tmp_dir, 'output')
pipeline_config = pipeline_pb2.TrainEvalPipelineConfig()
pipeline_config.eval_config.use_moving_averages = False
exporter.export_inference_graph(
input_type='image_tensor',
pipeline_config=pipeline_config,
trained_checkpoint_prefix=trained_checkpoint_prefix,
output_directory=output_directory,
input_shape=input_shape)
saved_model_path = os.path.join(output_directory, 'saved_model')
self.assertTrue(
os.path.exists(os.path.join(saved_model_path, 'saved_model.pb')))
with tf.Graph().as_default() as od_graph:
with self.test_session(graph=od_graph) as sess:
meta_graph = tf.saved_model.loader.load(
sess, [tf.saved_model.tag_constants.SERVING], saved_model_path)
signature = meta_graph.signature_def['serving_default']
input_tensor_name = signature.inputs['inputs'].name
image_tensor = od_graph.get_tensor_by_name(input_tensor_name)
self.assertSequenceEqual(image_tensor.get_shape().as_list(),
input_shape)
def test_export_graph_with_tf_example_input(self):
tmp_dir = self.get_temp_dir()
trained_checkpoint_prefix = os.path.join(tmp_dir, 'model.ckpt')
self._save_checkpoint_from_mock_model(trained_checkpoint_prefix,
use_moving_averages=False)
with mock.patch.object(
model_builder, 'build', autospec=True) as mock_builder:
mock_builder.return_value = FakeModel()
output_directory = os.path.join(tmp_dir, 'output')
pipeline_config = pipeline_pb2.TrainEvalPipelineConfig()
pipeline_config.eval_config.use_moving_averages = False
exporter.export_inference_graph(
input_type='tf_example',
pipeline_config=pipeline_config,
trained_checkpoint_prefix=trained_checkpoint_prefix,
output_directory=output_directory)
self.assertTrue(os.path.exists(os.path.join(
output_directory, 'saved_model', 'saved_model.pb')))
def test_export_graph_with_fixed_size_tf_example_input(self):
input_shape = [1, 320, 320, 3]
tmp_dir = self.get_temp_dir()
trained_checkpoint_prefix = os.path.join(tmp_dir, 'model.ckpt')
self._save_checkpoint_from_mock_model(
trained_checkpoint_prefix, use_moving_averages=False)
with mock.patch.object(
model_builder, 'build', autospec=True) as mock_builder:
mock_builder.return_value = FakeModel()
output_directory = os.path.join(tmp_dir, 'output')
pipeline_config = pipeline_pb2.TrainEvalPipelineConfig()
pipeline_config.eval_config.use_moving_averages = False
exporter.export_inference_graph(
input_type='tf_example',
pipeline_config=pipeline_config,
trained_checkpoint_prefix=trained_checkpoint_prefix,
output_directory=output_directory,
input_shape=input_shape)
saved_model_path = os.path.join(output_directory, 'saved_model')
self.assertTrue(
os.path.exists(os.path.join(saved_model_path, 'saved_model.pb')))
def test_export_graph_with_encoded_image_string_input(self):
tmp_dir = self.get_temp_dir()
trained_checkpoint_prefix = os.path.join(tmp_dir, 'model.ckpt')
self._save_checkpoint_from_mock_model(trained_checkpoint_prefix,
use_moving_averages=False)
with mock.patch.object(
model_builder, 'build', autospec=True) as mock_builder:
mock_builder.return_value = FakeModel()
output_directory = os.path.join(tmp_dir, 'output')
pipeline_config = pipeline_pb2.TrainEvalPipelineConfig()
pipeline_config.eval_config.use_moving_averages = False
exporter.export_inference_graph(
input_type='encoded_image_string_tensor',
pipeline_config=pipeline_config,
trained_checkpoint_prefix=trained_checkpoint_prefix,
output_directory=output_directory)
self.assertTrue(os.path.exists(os.path.join(
output_directory, 'saved_model', 'saved_model.pb')))
def test_export_graph_with_fixed_size_encoded_image_string_input(self):
input_shape = [1, 320, 320, 3]
tmp_dir = self.get_temp_dir()
trained_checkpoint_prefix = os.path.join(tmp_dir, 'model.ckpt')
self._save_checkpoint_from_mock_model(
trained_checkpoint_prefix, use_moving_averages=False)
with mock.patch.object(
model_builder, 'build', autospec=True) as mock_builder:
mock_builder.return_value = FakeModel()
output_directory = os.path.join(tmp_dir, 'output')
pipeline_config = pipeline_pb2.TrainEvalPipelineConfig()
pipeline_config.eval_config.use_moving_averages = False
exporter.export_inference_graph(
input_type='encoded_image_string_tensor',
pipeline_config=pipeline_config,
trained_checkpoint_prefix=trained_checkpoint_prefix,
output_directory=output_directory,
input_shape=input_shape)
saved_model_path = os.path.join(output_directory, 'saved_model')
self.assertTrue(
os.path.exists(os.path.join(saved_model_path, 'saved_model.pb')))
def _get_variables_in_checkpoint(self, checkpoint_file):
return set([
var_name
for var_name, _ in tf.train.list_variables(checkpoint_file)])
def test_replace_variable_values_with_moving_averages(self):
tmp_dir = self.get_temp_dir()
trained_checkpoint_prefix = os.path.join(tmp_dir, 'model.ckpt')
new_checkpoint_prefix = os.path.join(tmp_dir, 'new.ckpt')
self._save_checkpoint_from_mock_model(trained_checkpoint_prefix,
use_moving_averages=True)
graph = tf.Graph()
with graph.as_default():
fake_model = FakeModel()
preprocessed_inputs, true_image_shapes = fake_model.preprocess(
tf.placeholder(dtype=tf.float32, shape=[None, None, None, 3]))
predictions = fake_model.predict(preprocessed_inputs, true_image_shapes)
fake_model.postprocess(predictions, true_image_shapes)
exporter.replace_variable_values_with_moving_averages(
graph, trained_checkpoint_prefix, new_checkpoint_prefix)
expected_variables = set(['conv2d/bias', 'conv2d/kernel'])
variables_in_old_ckpt = self._get_variables_in_checkpoint(
trained_checkpoint_prefix)
self.assertIn('conv2d/bias/ExponentialMovingAverage',
variables_in_old_ckpt)
self.assertIn('conv2d/kernel/ExponentialMovingAverage',
variables_in_old_ckpt)
variables_in_new_ckpt = self._get_variables_in_checkpoint(
new_checkpoint_prefix)
self.assertTrue(expected_variables.issubset(variables_in_new_ckpt))
self.assertNotIn('conv2d/bias/ExponentialMovingAverage',
variables_in_new_ckpt)
self.assertNotIn('conv2d/kernel/ExponentialMovingAverage',
variables_in_new_ckpt)
def test_export_graph_with_moving_averages(self):
tmp_dir = self.get_temp_dir()
trained_checkpoint_prefix = os.path.join(tmp_dir, 'model.ckpt')
self._save_checkpoint_from_mock_model(trained_checkpoint_prefix,
use_moving_averages=True)
output_directory = os.path.join(tmp_dir, 'output')
with mock.patch.object(
model_builder, 'build', autospec=True) as mock_builder:
mock_builder.return_value = FakeModel()
pipeline_config = pipeline_pb2.TrainEvalPipelineConfig()
pipeline_config.eval_config.use_moving_averages = True
exporter.export_inference_graph(
input_type='image_tensor',
pipeline_config=pipeline_config,
trained_checkpoint_prefix=trained_checkpoint_prefix,
output_directory=output_directory)
self.assertTrue(os.path.exists(os.path.join(
output_directory, 'saved_model', 'saved_model.pb')))
expected_variables = set(['conv2d/bias', 'conv2d/kernel', 'global_step'])
actual_variables = set(
[var_name for var_name, _ in tf.train.list_variables(output_directory)])
self.assertTrue(expected_variables.issubset(actual_variables))
def test_export_model_with_quantization_nodes(self):
tmp_dir = self.get_temp_dir()
trained_checkpoint_prefix = os.path.join(tmp_dir, 'model.ckpt')
self._save_checkpoint_from_mock_model(
trained_checkpoint_prefix,
use_moving_averages=False,
enable_quantization=True)
output_directory = os.path.join(tmp_dir, 'output')
inference_graph_path = os.path.join(output_directory,
'inference_graph.pbtxt')
with mock.patch.object(
model_builder, 'build', autospec=True) as mock_builder:
mock_builder.return_value = FakeModel()
pipeline_config = pipeline_pb2.TrainEvalPipelineConfig()
text_format.Merge(
"""graph_rewriter {
quantization {
delay: 50000
activation_bits: 8
weight_bits: 8
}
}""", pipeline_config)
exporter.export_inference_graph(
input_type='image_tensor',
pipeline_config=pipeline_config,
trained_checkpoint_prefix=trained_checkpoint_prefix,
output_directory=output_directory,
write_inference_graph=True)
self._load_inference_graph(inference_graph_path, is_binary=False)
has_quant_nodes = False
for v in variables_helper.get_global_variables_safely():
if six.ensure_str(v.op.name).endswith('act_quant/min'):
has_quant_nodes = True
break
self.assertTrue(has_quant_nodes)
def test_export_model_with_all_output_nodes(self):
tmp_dir = self.get_temp_dir()
trained_checkpoint_prefix = os.path.join(tmp_dir, 'model.ckpt')
self._save_checkpoint_from_mock_model(trained_checkpoint_prefix,
use_moving_averages=True)
output_directory = os.path.join(tmp_dir, 'output')
inference_graph_path = os.path.join(output_directory,
'frozen_inference_graph.pb')
with mock.patch.object(
model_builder, 'build', autospec=True) as mock_builder:
mock_builder.return_value = FakeModel(
add_detection_keypoints=True, add_detection_masks=True,
add_detection_features=True)
pipeline_config = pipeline_pb2.TrainEvalPipelineConfig()
exporter.export_inference_graph(
input_type='image_tensor',
pipeline_config=pipeline_config,
trained_checkpoint_prefix=trained_checkpoint_prefix,
output_directory=output_directory)
inference_graph = self._load_inference_graph(inference_graph_path)
with self.test_session(graph=inference_graph):
inference_graph.get_tensor_by_name('image_tensor:0')
inference_graph.get_tensor_by_name('detection_boxes:0')
inference_graph.get_tensor_by_name('detection_scores:0')
inference_graph.get_tensor_by_name('detection_multiclass_scores:0')
inference_graph.get_tensor_by_name('detection_classes:0')
inference_graph.get_tensor_by_name('detection_keypoints:0')
inference_graph.get_tensor_by_name('detection_masks:0')
inference_graph.get_tensor_by_name('num_detections:0')
inference_graph.get_tensor_by_name('detection_features:0')
def test_export_model_with_detection_only_nodes(self):
tmp_dir = self.get_temp_dir()
trained_checkpoint_prefix = os.path.join(tmp_dir, 'model.ckpt')
self._save_checkpoint_from_mock_model(trained_checkpoint_prefix,
use_moving_averages=True)
output_directory = os.path.join(tmp_dir, 'output')
inference_graph_path = os.path.join(output_directory,
'frozen_inference_graph.pb')
with mock.patch.object(
model_builder, 'build', autospec=True) as mock_builder:
mock_builder.return_value = FakeModel(add_detection_masks=False)
pipeline_config = pipeline_pb2.TrainEvalPipelineConfig()
exporter.export_inference_graph(
input_type='image_tensor',
pipeline_config=pipeline_config,
trained_checkpoint_prefix=trained_checkpoint_prefix,
output_directory=output_directory)
inference_graph = self._load_inference_graph(inference_graph_path)
with self.test_session(graph=inference_graph):
inference_graph.get_tensor_by_name('image_tensor:0')
inference_graph.get_tensor_by_name('detection_boxes:0')
inference_graph.get_tensor_by_name('detection_scores:0')
inference_graph.get_tensor_by_name('detection_multiclass_scores:0')
inference_graph.get_tensor_by_name('detection_classes:0')
inference_graph.get_tensor_by_name('num_detections:0')
with self.assertRaises(KeyError):
inference_graph.get_tensor_by_name('detection_keypoints:0')
inference_graph.get_tensor_by_name('detection_masks:0')
def test_export_model_with_detection_only_nodes_and_detection_features(self):
tmp_dir = self.get_temp_dir()
trained_checkpoint_prefix = os.path.join(tmp_dir, 'model.ckpt')
self._save_checkpoint_from_mock_model(trained_checkpoint_prefix,
use_moving_averages=True)
output_directory = os.path.join(tmp_dir, 'output')
inference_graph_path = os.path.join(output_directory,
'frozen_inference_graph.pb')
with mock.patch.object(
model_builder, 'build', autospec=True) as mock_builder:
mock_builder.return_value = FakeModel(add_detection_features=True)
pipeline_config = pipeline_pb2.TrainEvalPipelineConfig()
exporter.export_inference_graph(
input_type='image_tensor',
pipeline_config=pipeline_config,
trained_checkpoint_prefix=trained_checkpoint_prefix,
output_directory=output_directory)
inference_graph = self._load_inference_graph(inference_graph_path)
with self.test_session(graph=inference_graph):
inference_graph.get_tensor_by_name('image_tensor:0')
inference_graph.get_tensor_by_name('detection_boxes:0')
inference_graph.get_tensor_by_name('detection_scores:0')
inference_graph.get_tensor_by_name('detection_multiclass_scores:0')
inference_graph.get_tensor_by_name('detection_classes:0')
inference_graph.get_tensor_by_name('num_detections:0')
inference_graph.get_tensor_by_name('detection_features:0')
with self.assertRaises(KeyError):
inference_graph.get_tensor_by_name('detection_keypoints:0')
inference_graph.get_tensor_by_name('detection_masks:0')
def test_export_and_run_inference_with_image_tensor(self):
tmp_dir = self.get_temp_dir()
trained_checkpoint_prefix = os.path.join(tmp_dir, 'model.ckpt')
self._save_checkpoint_from_mock_model(trained_checkpoint_prefix,
use_moving_averages=True)
output_directory = os.path.join(tmp_dir, 'output')
inference_graph_path = os.path.join(output_directory,
'frozen_inference_graph.pb')
with mock.patch.object(
model_builder, 'build', autospec=True) as mock_builder:
mock_builder.return_value = FakeModel(
add_detection_keypoints=True, add_detection_masks=True)
pipeline_config = pipeline_pb2.TrainEvalPipelineConfig()
pipeline_config.eval_config.use_moving_averages = False
exporter.export_inference_graph(
input_type='image_tensor',
pipeline_config=pipeline_config,
trained_checkpoint_prefix=trained_checkpoint_prefix,
output_directory=output_directory)
inference_graph = self._load_inference_graph(inference_graph_path)
with self.test_session(graph=inference_graph) as sess:
image_tensor = inference_graph.get_tensor_by_name('image_tensor:0')
boxes = inference_graph.get_tensor_by_name('detection_boxes:0')
scores = inference_graph.get_tensor_by_name('detection_scores:0')
classes = inference_graph.get_tensor_by_name('detection_classes:0')
keypoints = inference_graph.get_tensor_by_name('detection_keypoints:0')
masks = inference_graph.get_tensor_by_name('detection_masks:0')
num_detections = inference_graph.get_tensor_by_name('num_detections:0')
(boxes_np, scores_np, classes_np, keypoints_np, masks_np,
num_detections_np) = sess.run(
[boxes, scores, classes, keypoints, masks, num_detections],
feed_dict={image_tensor: np.ones((2, 4, 4, 3)).astype(np.uint8)})
self.assertAllClose(boxes_np, [[[0.0, 0.0, 0.5, 0.5],
[0.5, 0.5, 0.8, 0.8]],
[[0.5, 0.5, 1.0, 1.0],
[0.0, 0.0, 0.0, 0.0]]])
self.assertAllClose(scores_np, [[0.7, 0.6],
[0.9, 0.0]])
self.assertAllClose(classes_np, [[1, 2],
[2, 1]])
self.assertAllClose(keypoints_np, np.arange(48).reshape([2, 2, 6, 2]))
self.assertAllClose(masks_np, np.arange(64).reshape([2, 2, 4, 4]))
self.assertAllClose(num_detections_np, [2, 1])
def _create_encoded_image_string(self, image_array_np, encoding_format):
od_graph = tf.Graph()
with od_graph.as_default():
if encoding_format == 'jpg':
encoded_string = tf.image.encode_jpeg(image_array_np)
elif encoding_format == 'png':
encoded_string = tf.image.encode_png(image_array_np)
else:
raise ValueError('Supports only the following formats: `jpg`, `png`')
with self.test_session(graph=od_graph):
return encoded_string.eval()
def test_export_and_run_inference_with_encoded_image_string_tensor(self):
tmp_dir = self.get_temp_dir()
trained_checkpoint_prefix = os.path.join(tmp_dir, 'model.ckpt')
self._save_checkpoint_from_mock_model(trained_checkpoint_prefix,
use_moving_averages=True)
output_directory = os.path.join(tmp_dir, 'output')
inference_graph_path = os.path.join(output_directory,
'frozen_inference_graph.pb')
with mock.patch.object(
model_builder, 'build', autospec=True) as mock_builder:
mock_builder.return_value = FakeModel(
add_detection_keypoints=True, add_detection_masks=True)
pipeline_config = pipeline_pb2.TrainEvalPipelineConfig()
pipeline_config.eval_config.use_moving_averages = False
exporter.export_inference_graph(
input_type='encoded_image_string_tensor',
pipeline_config=pipeline_config,
trained_checkpoint_prefix=trained_checkpoint_prefix,
output_directory=output_directory)
inference_graph = self._load_inference_graph(inference_graph_path)
jpg_image_str = self._create_encoded_image_string(
np.ones((4, 4, 3)).astype(np.uint8), 'jpg')
png_image_str = self._create_encoded_image_string(
np.ones((4, 4, 3)).astype(np.uint8), 'png')
with self.test_session(graph=inference_graph) as sess:
image_str_tensor = inference_graph.get_tensor_by_name(
'encoded_image_string_tensor:0')
boxes = inference_graph.get_tensor_by_name('detection_boxes:0')
scores = inference_graph.get_tensor_by_name('detection_scores:0')
multiclass_scores = inference_graph.get_tensor_by_name(
'detection_multiclass_scores:0')
classes = inference_graph.get_tensor_by_name('detection_classes:0')
keypoints = inference_graph.get_tensor_by_name('detection_keypoints:0')
masks = inference_graph.get_tensor_by_name('detection_masks:0')
num_detections = inference_graph.get_tensor_by_name('num_detections:0')
for image_str in [jpg_image_str, png_image_str]:
image_str_batch_np = np.hstack([image_str]* 2)
(boxes_np, scores_np, multiclass_scores_np, classes_np, keypoints_np,
masks_np, num_detections_np) = sess.run(
[
boxes, scores, multiclass_scores, classes, keypoints, masks,
num_detections
],
feed_dict={image_str_tensor: image_str_batch_np})
self.assertAllClose(boxes_np, [[[0.0, 0.0, 0.5, 0.5],
[0.5, 0.5, 0.8, 0.8]],
[[0.5, 0.5, 1.0, 1.0],
[0.0, 0.0, 0.0, 0.0]]])
self.assertAllClose(scores_np, [[0.7, 0.6],
[0.9, 0.0]])
self.assertAllClose(multiclass_scores_np, [[[0.3, 0.7], [0.4, 0.6]],
[[0.1, 0.9], [0.0, 0.0]]])
self.assertAllClose(classes_np, [[1, 2],
[2, 1]])
self.assertAllClose(keypoints_np, np.arange(48).reshape([2, 2, 6, 2]))
self.assertAllClose(masks_np, np.arange(64).reshape([2, 2, 4, 4]))
self.assertAllClose(num_detections_np, [2, 1])
def test_raise_runtime_error_on_images_with_different_sizes(self):
tmp_dir = self.get_temp_dir()
trained_checkpoint_prefix = os.path.join(tmp_dir, 'model.ckpt')
self._save_checkpoint_from_mock_model(trained_checkpoint_prefix,
use_moving_averages=True)
output_directory = os.path.join(tmp_dir, 'output')
inference_graph_path = os.path.join(output_directory,
'frozen_inference_graph.pb')
with mock.patch.object(
model_builder, 'build', autospec=True) as mock_builder:
mock_builder.return_value = FakeModel(
add_detection_keypoints=True, add_detection_masks=True)
pipeline_config = pipeline_pb2.TrainEvalPipelineConfig()
pipeline_config.eval_config.use_moving_averages = False
exporter.export_inference_graph(
input_type='encoded_image_string_tensor',
pipeline_config=pipeline_config,
trained_checkpoint_prefix=trained_checkpoint_prefix,
output_directory=output_directory)
inference_graph = self._load_inference_graph(inference_graph_path)
large_image = self._create_encoded_image_string(
np.ones((4, 4, 3)).astype(np.uint8), 'jpg')
small_image = self._create_encoded_image_string(
np.ones((2, 2, 3)).astype(np.uint8), 'jpg')
image_str_batch_np = np.hstack([large_image, small_image])
with self.test_session(graph=inference_graph) as sess:
image_str_tensor = inference_graph.get_tensor_by_name(
'encoded_image_string_tensor:0')
boxes = inference_graph.get_tensor_by_name('detection_boxes:0')
scores = inference_graph.get_tensor_by_name('detection_scores:0')
classes = inference_graph.get_tensor_by_name('detection_classes:0')
keypoints = inference_graph.get_tensor_by_name('detection_keypoints:0')
masks = inference_graph.get_tensor_by_name('detection_masks:0')
num_detections = inference_graph.get_tensor_by_name('num_detections:0')
with self.assertRaisesRegexp(tf.errors.InvalidArgumentError,
'TensorArray.*shape'):
sess.run(
[boxes, scores, classes, keypoints, masks, num_detections],
feed_dict={image_str_tensor: image_str_batch_np})
def test_export_and_run_inference_with_tf_example(self):
tmp_dir = self.get_temp_dir()
trained_checkpoint_prefix = os.path.join(tmp_dir, 'model.ckpt')
self._save_checkpoint_from_mock_model(trained_checkpoint_prefix,
use_moving_averages=True)
output_directory = os.path.join(tmp_dir, 'output')
inference_graph_path = os.path.join(output_directory,
'frozen_inference_graph.pb')
with mock.patch.object(
model_builder, 'build', autospec=True) as mock_builder:
mock_builder.return_value = FakeModel(
add_detection_keypoints=True, add_detection_masks=True)
pipeline_config = pipeline_pb2.TrainEvalPipelineConfig()
pipeline_config.eval_config.use_moving_averages = False
exporter.export_inference_graph(
input_type='tf_example',
pipeline_config=pipeline_config,
trained_checkpoint_prefix=trained_checkpoint_prefix,
output_directory=output_directory)
inference_graph = self._load_inference_graph(inference_graph_path)
tf_example_np = np.expand_dims(self._create_tf_example(
np.ones((4, 4, 3)).astype(np.uint8)), axis=0)
with self.test_session(graph=inference_graph) as sess:
tf_example = inference_graph.get_tensor_by_name('tf_example:0')
boxes = inference_graph.get_tensor_by_name('detection_boxes:0')
scores = inference_graph.get_tensor_by_name('detection_scores:0')
classes = inference_graph.get_tensor_by_name('detection_classes:0')
keypoints = inference_graph.get_tensor_by_name('detection_keypoints:0')
masks = inference_graph.get_tensor_by_name('detection_masks:0')
num_detections = inference_graph.get_tensor_by_name('num_detections:0')
(boxes_np, scores_np, classes_np, keypoints_np, masks_np,
num_detections_np) = sess.run(
[boxes, scores, classes, keypoints, masks, num_detections],
feed_dict={tf_example: tf_example_np})
self.assertAllClose(boxes_np, [[[0.0, 0.0, 0.5, 0.5],
[0.5, 0.5, 0.8, 0.8]],
[[0.5, 0.5, 1.0, 1.0],
[0.0, 0.0, 0.0, 0.0]]])
self.assertAllClose(scores_np, [[0.7, 0.6],
[0.9, 0.0]])
self.assertAllClose(classes_np, [[1, 2],
[2, 1]])
self.assertAllClose(keypoints_np, np.arange(48).reshape([2, 2, 6, 2]))
self.assertAllClose(masks_np, np.arange(64).reshape([2, 2, 4, 4]))
self.assertAllClose(num_detections_np, [2, 1])
def test_write_frozen_graph(self):
tmp_dir = self.get_temp_dir()
trained_checkpoint_prefix = os.path.join(tmp_dir, 'model.ckpt')
self._save_checkpoint_from_mock_model(trained_checkpoint_prefix,
use_moving_averages=True)
output_directory = os.path.join(tmp_dir, 'output')
inference_graph_path = os.path.join(output_directory,
'frozen_inference_graph.pb')
tf.gfile.MakeDirs(output_directory)
with mock.patch.object(
model_builder, 'build', autospec=True) as mock_builder:
mock_builder.return_value = FakeModel(
add_detection_keypoints=True, add_detection_masks=True)
pipeline_config = pipeline_pb2.TrainEvalPipelineConfig()
pipeline_config.eval_config.use_moving_averages = False
detection_model = model_builder.build(pipeline_config.model,
is_training=False)
outputs, _ = exporter.build_detection_graph(
input_type='tf_example',
detection_model=detection_model,
input_shape=None,
output_collection_name='inference_op',
graph_hook_fn=None)
output_node_names = ','.join(list(outputs.keys()))
saver = tf.train.Saver()
input_saver_def = saver.as_saver_def()
exporter.freeze_graph_with_def_protos(
input_graph_def=tf.get_default_graph().as_graph_def(),
input_saver_def=input_saver_def,
input_checkpoint=trained_checkpoint_prefix,
output_node_names=output_node_names,
restore_op_name='save/restore_all',
filename_tensor_name='save/Const:0',
output_graph=inference_graph_path,
clear_devices=True,
initializer_nodes='')
inference_graph = self._load_inference_graph(inference_graph_path)
tf_example_np = np.expand_dims(self._create_tf_example(
np.ones((4, 4, 3)).astype(np.uint8)), axis=0)
with self.test_session(graph=inference_graph) as sess:
tf_example = inference_graph.get_tensor_by_name('tf_example:0')
boxes = inference_graph.get_tensor_by_name('detection_boxes:0')
scores = inference_graph.get_tensor_by_name('detection_scores:0')
classes = inference_graph.get_tensor_by_name('detection_classes:0')
keypoints = inference_graph.get_tensor_by_name('detection_keypoints:0')
masks = inference_graph.get_tensor_by_name('detection_masks:0')
num_detections = inference_graph.get_tensor_by_name('num_detections:0')
(boxes_np, scores_np, classes_np, keypoints_np, masks_np,
num_detections_np) = sess.run(
[boxes, scores, classes, keypoints, masks, num_detections],
feed_dict={tf_example: tf_example_np})
self.assertAllClose(boxes_np, [[[0.0, 0.0, 0.5, 0.5],
[0.5, 0.5, 0.8, 0.8]],
[[0.5, 0.5, 1.0, 1.0],
[0.0, 0.0, 0.0, 0.0]]])
self.assertAllClose(scores_np, [[0.7, 0.6],
[0.9, 0.0]])
self.assertAllClose(classes_np, [[1, 2],
[2, 1]])
self.assertAllClose(keypoints_np, np.arange(48).reshape([2, 2, 6, 2]))
self.assertAllClose(masks_np, np.arange(64).reshape([2, 2, 4, 4]))
self.assertAllClose(num_detections_np, [2, 1])
def test_export_graph_saves_pipeline_file(self):
tmp_dir = self.get_temp_dir()
trained_checkpoint_prefix = os.path.join(tmp_dir, 'model.ckpt')
self._save_checkpoint_from_mock_model(trained_checkpoint_prefix,
use_moving_averages=True)
output_directory = os.path.join(tmp_dir, 'output')
with mock.patch.object(
model_builder, 'build', autospec=True) as mock_builder:
mock_builder.return_value = FakeModel()
pipeline_config = pipeline_pb2.TrainEvalPipelineConfig()
exporter.export_inference_graph(
input_type='image_tensor',
pipeline_config=pipeline_config,
trained_checkpoint_prefix=trained_checkpoint_prefix,
output_directory=output_directory)
expected_pipeline_path = os.path.join(
output_directory, 'pipeline.config')
self.assertTrue(os.path.exists(expected_pipeline_path))
written_pipeline_config = pipeline_pb2.TrainEvalPipelineConfig()
with tf.gfile.GFile(expected_pipeline_path, 'r') as f:
proto_str = f.read()
text_format.Merge(proto_str, written_pipeline_config)
self.assertProtoEquals(pipeline_config, written_pipeline_config)
def test_export_saved_model_and_run_inference(self):
tmp_dir = self.get_temp_dir()
trained_checkpoint_prefix = os.path.join(tmp_dir, 'model.ckpt')
self._save_checkpoint_from_mock_model(trained_checkpoint_prefix,
use_moving_averages=False)
output_directory = os.path.join(tmp_dir, 'output')
saved_model_path = os.path.join(output_directory, 'saved_model')
with mock.patch.object(
model_builder, 'build', autospec=True) as mock_builder:
mock_builder.return_value = FakeModel(
add_detection_keypoints=True, add_detection_masks=True)
pipeline_config = pipeline_pb2.TrainEvalPipelineConfig()
pipeline_config.eval_config.use_moving_averages = False
exporter.export_inference_graph(
input_type='tf_example',
pipeline_config=pipeline_config,
trained_checkpoint_prefix=trained_checkpoint_prefix,
output_directory=output_directory)
tf_example_np = np.hstack([self._create_tf_example(
np.ones((4, 4, 3)).astype(np.uint8))] * 2)
with tf.Graph().as_default() as od_graph:
with self.test_session(graph=od_graph) as sess:
meta_graph = tf.saved_model.loader.load(
sess, [tf.saved_model.tag_constants.SERVING], saved_model_path)
signature = meta_graph.signature_def['serving_default']
input_tensor_name = signature.inputs['inputs'].name
tf_example = od_graph.get_tensor_by_name(input_tensor_name)
boxes = od_graph.get_tensor_by_name(
signature.outputs['detection_boxes'].name)
scores = od_graph.get_tensor_by_name(
signature.outputs['detection_scores'].name)
multiclass_scores = od_graph.get_tensor_by_name(
signature.outputs['detection_multiclass_scores'].name)
classes = od_graph.get_tensor_by_name(
signature.outputs['detection_classes'].name)
keypoints = od_graph.get_tensor_by_name(
signature.outputs['detection_keypoints'].name)
masks = od_graph.get_tensor_by_name(
signature.outputs['detection_masks'].name)
num_detections = od_graph.get_tensor_by_name(
signature.outputs['num_detections'].name)
(boxes_np, scores_np, multiclass_scores_np, classes_np, keypoints_np,
masks_np, num_detections_np) = sess.run(
[boxes, scores, multiclass_scores, classes, keypoints, masks,
num_detections],
feed_dict={tf_example: tf_example_np})
self.assertAllClose(boxes_np, [[[0.0, 0.0, 0.5, 0.5],
[0.5, 0.5, 0.8, 0.8]],
[[0.5, 0.5, 1.0, 1.0],
[0.0, 0.0, 0.0, 0.0]]])
self.assertAllClose(scores_np, [[0.7, 0.6],
[0.9, 0.0]])
self.assertAllClose(multiclass_scores_np, [[[0.3, 0.7], [0.4, 0.6]],
[[0.1, 0.9], [0.0, 0.0]]])
self.assertAllClose(classes_np, [[1, 2],
[2, 1]])
self.assertAllClose(keypoints_np, np.arange(48).reshape([2, 2, 6, 2]))
self.assertAllClose(masks_np, np.arange(64).reshape([2, 2, 4, 4]))
self.assertAllClose(num_detections_np, [2, 1])
def test_write_saved_model(self):
tmp_dir = self.get_temp_dir()
trained_checkpoint_prefix = os.path.join(tmp_dir, 'model.ckpt')
self._save_checkpoint_from_mock_model(trained_checkpoint_prefix,
use_moving_averages=False)
output_directory = os.path.join(tmp_dir, 'output')
saved_model_path = os.path.join(output_directory, 'saved_model')
tf.gfile.MakeDirs(output_directory)
with mock.patch.object(
model_builder, 'build', autospec=True) as mock_builder:
mock_builder.return_value = FakeModel(
add_detection_keypoints=True, add_detection_masks=True)
pipeline_config = pipeline_pb2.TrainEvalPipelineConfig()
pipeline_config.eval_config.use_moving_averages = False
detection_model = model_builder.build(pipeline_config.model,
is_training=False)
outputs, placeholder_tensor = exporter.build_detection_graph(
input_type='tf_example',
detection_model=detection_model,
input_shape=None,
output_collection_name='inference_op',
graph_hook_fn=None)
output_node_names = ','.join(list(outputs.keys()))
saver = tf.train.Saver()
input_saver_def = saver.as_saver_def()
frozen_graph_def = exporter.freeze_graph_with_def_protos(
input_graph_def=tf.get_default_graph().as_graph_def(),
input_saver_def=input_saver_def,
input_checkpoint=trained_checkpoint_prefix,
output_node_names=output_node_names,
restore_op_name='save/restore_all',
filename_tensor_name='save/Const:0',
output_graph='',
clear_devices=True,
initializer_nodes='')
exporter.write_saved_model(
saved_model_path=saved_model_path,
frozen_graph_def=frozen_graph_def,
inputs=placeholder_tensor,
outputs=outputs)
tf_example_np = np.hstack([self._create_tf_example(
np.ones((4, 4, 3)).astype(np.uint8))] * 2)
with tf.Graph().as_default() as od_graph:
with self.test_session(graph=od_graph) as sess:
meta_graph = tf.saved_model.loader.load(
sess, [tf.saved_model.tag_constants.SERVING], saved_model_path)
signature = meta_graph.signature_def['serving_default']
input_tensor_name = signature.inputs['inputs'].name
tf_example = od_graph.get_tensor_by_name(input_tensor_name)
boxes = od_graph.get_tensor_by_name(
signature.outputs['detection_boxes'].name)
scores = od_graph.get_tensor_by_name(
signature.outputs['detection_scores'].name)
classes = od_graph.get_tensor_by_name(
signature.outputs['detection_classes'].name)
keypoints = od_graph.get_tensor_by_name(
signature.outputs['detection_keypoints'].name)
masks = od_graph.get_tensor_by_name(
signature.outputs['detection_masks'].name)
num_detections = od_graph.get_tensor_by_name(
signature.outputs['num_detections'].name)
(boxes_np, scores_np, classes_np, keypoints_np, masks_np,
num_detections_np) = sess.run(
[boxes, scores, classes, keypoints, masks, num_detections],
feed_dict={tf_example: tf_example_np})
self.assertAllClose(boxes_np, [[[0.0, 0.0, 0.5, 0.5],
[0.5, 0.5, 0.8, 0.8]],
[[0.5, 0.5, 1.0, 1.0],
[0.0, 0.0, 0.0, 0.0]]])
self.assertAllClose(scores_np, [[0.7, 0.6],
[0.9, 0.0]])
self.assertAllClose(classes_np, [[1, 2],
[2, 1]])
self.assertAllClose(keypoints_np, np.arange(48).reshape([2, 2, 6, 2]))
self.assertAllClose(masks_np, np.arange(64).reshape([2, 2, 4, 4]))
self.assertAllClose(num_detections_np, [2, 1])
def test_export_checkpoint_and_run_inference(self):
tmp_dir = self.get_temp_dir()
trained_checkpoint_prefix = os.path.join(tmp_dir, 'model.ckpt')
self._save_checkpoint_from_mock_model(trained_checkpoint_prefix,
use_moving_averages=False)
output_directory = os.path.join(tmp_dir, 'output')
model_path = os.path.join(output_directory, 'model.ckpt')
meta_graph_path = model_path + '.meta'
with mock.patch.object(
model_builder, 'build', autospec=True) as mock_builder:
mock_builder.return_value = FakeModel(
add_detection_keypoints=True, add_detection_masks=True)
pipeline_config = pipeline_pb2.TrainEvalPipelineConfig()
pipeline_config.eval_config.use_moving_averages = False
exporter.export_inference_graph(
input_type='tf_example',
pipeline_config=pipeline_config,
trained_checkpoint_prefix=trained_checkpoint_prefix,
output_directory=output_directory)
tf_example_np = np.hstack([self._create_tf_example(
np.ones((4, 4, 3)).astype(np.uint8))] * 2)
with tf.Graph().as_default() as od_graph:
with self.test_session(graph=od_graph) as sess:
new_saver = tf.train.import_meta_graph(meta_graph_path)
new_saver.restore(sess, model_path)
tf_example = od_graph.get_tensor_by_name('tf_example:0')
boxes = od_graph.get_tensor_by_name('detection_boxes:0')
scores = od_graph.get_tensor_by_name('detection_scores:0')
classes = od_graph.get_tensor_by_name('detection_classes:0')
keypoints = od_graph.get_tensor_by_name('detection_keypoints:0')
masks = od_graph.get_tensor_by_name('detection_masks:0')
num_detections = od_graph.get_tensor_by_name('num_detections:0')
(boxes_np, scores_np, classes_np, keypoints_np, masks_np,
num_detections_np) = sess.run(
[boxes, scores, classes, keypoints, masks, num_detections],
feed_dict={tf_example: tf_example_np})
self.assertAllClose(boxes_np, [[[0.0, 0.0, 0.5, 0.5],
[0.5, 0.5, 0.8, 0.8]],
[[0.5, 0.5, 1.0, 1.0],
[0.0, 0.0, 0.0, 0.0]]])
self.assertAllClose(scores_np, [[0.7, 0.6],