Open
Description
I get a crash at the following.
https://github.com/Aswendt-Lab/AIDAqc/blob/87e69818c128f3e8d2ac2489d95b06083751af96/scripts/QC.py#L616h
I think it happens when the dataset is too small. I get the following error message
File "<stdin>", line 1, in <module>
File "/usr/local/lib/python3.12/dist-packages/sklearn/base.py", line 1146, in fit_predict
return self.fit(X, **kwargs).predict(X)
^^^^^^^^^^^^^^^^^^^^^
File "/usr/local/lib/python3.12/dist-packages/sklearn/base.py", line 1389, in wrapper
return fit_method(estimator, *args, **kwargs)
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
File "/usr/local/lib/python3.12/dist-packages/sklearn/covariance/_elliptic_envelope.py", line 183, in fit
super().fit(X)
File "/usr/local/lib/python3.12/dist-packages/sklearn/base.py", line 1389, in wrapper
return fit_method(estimator, *args, **kwargs)
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
File "/usr/local/lib/python3.12/dist-packages/sklearn/covariance/_robust_covariance.py", line 753, in fit
raw_location, raw_covariance, raw_support, raw_dist = fast_mcd(
^^^^^^^^^
File "/usr/local/lib/python3.12/dist-packages/sklearn/covariance/_robust_covariance.py", line 565, in fast_mcd
locations_full, covariances_full, supports_full, d = select_candidates(
^^^^^^^^^^^^^^^^^^
File "/usr/local/lib/python3.12/dist-packages/sklearn/covariance/_robust_covariance.py", line 336, in select_candidates
_c_step(
File "/usr/local/lib/python3.12/dist-packages/sklearn/covariance/_robust_covariance.py", line 136, in _c_step
support_indices = np.argpartition(dist, n_support - 1)[:n_support]
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
File "/usr/local/lib/python3.12/dist-packages/numpy/_core/fromnumeric.py", line 962, in argpartition
return _wrapfunc(a, 'argpartition', kth, axis=axis, kind=kind, order=order)
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
File "/usr/local/lib/python3.12/dist-packages/numpy/_core/fromnumeric.py", line 57, in _wrapfunc
return bound(*args, **kwds)
^^^^^^^^^^^^^^^^^^^^
ValueError: kth(=2) out of bounds (2)
I got this error running this feature file.
code to reproduce the error with my feature file (based on the ML function in QC.py
from sklearn.covariance import EllipticEnvelope
from sklearn.ensemble import IsolationForest
from sklearn.neighbors import LocalOutlierFactor
from sklearn.svm import OneClassSVM
import numpy as np
import os
import pandas as pd
csv_path = 'caculated_features_func.csv'
Abook= pd.read_csv(csv_path)
Abook= Abook.dropna(how='all',axis='columns')
Abook= Abook.dropna(how='any')
X = Abook.iloc[:,7:]
nu = 0.05
gamma = 2.0
clf = OneClassSVM(gamma="auto", kernel="poly", nu=nu,shrinking=False).fit(X)
svm_pre =clf.predict(X)
############## EllipticEnvelope
elpenv = EllipticEnvelope(contamination=0.025, random_state=1)
ell_pred = elpenv.fit_predict(X)
Metadata
Metadata
Assignees
Labels
No labels