|
1 |
| -from azure.identity import DefaultAzureCredential |
| 1 | +from typing import Any, List, Dict |
2 | 2 | from fastapi import APIRouter, Request, status
|
3 | 3 | from fastapi.responses import Response, JSONResponse
|
4 |
| -import semantic_kernel as sk |
5 |
| -from semantic_kernel.connectors.ai.open_ai import AzureChatCompletion, OpenAIChatCompletion |
6 |
| -from dotenv import load_dotenv |
7 |
| -from typing import Any, List, Dict |
8 |
| -import os |
9 | 4 | import requests
|
10 | 5 | import json
|
| 6 | +from routers.LLM import get_llm |
11 | 7 |
|
12 |
| -# Set the useLocalLLM and useAzureOpenAI variables based on environment variables |
13 |
| -useLocalLLM: bool = False |
14 |
| -useAzureOpenAI: bool = False |
15 |
| - |
16 |
| -if os.environ.get("USE_LOCAL_LLM"): |
17 |
| - useLocalLLM = os.environ.get("USE_LOCAL_LLM").lower() == "true" |
18 |
| - |
19 |
| -if os.environ.get("USE_AZURE_OPENAI"): |
20 |
| - useAzureOpenAI = os.environ.get("USE_AZURE_OPENAI").lower() == "true" |
21 |
| - |
22 |
| -# if useLocalLLM and useAzureOpenAI are both set to true, raise an exception |
23 |
| -if useLocalLLM and useAzureOpenAI: |
24 |
| - raise Exception("USE_LOCAL_LLM and USE_AZURE_OPENAI environment variables cannot both be set to true") |
25 |
| - |
26 |
| -# if useLocalLLM or useAzureOpenAI are set to true, get the endpoint from the environment variables |
27 |
| -if useLocalLLM or useAzureOpenAI: |
28 |
| - endpoint: str = os.environ.get("AI_ENDPOINT") or os.environ.get("AZURE_OPENAI_ENDPOINT") |
29 |
| - |
30 |
| - if isinstance(endpoint, str) == False or endpoint == "": |
31 |
| - raise Exception("AI_ENDPOINT or AZURE_OPENAI_ENDPOINT environment variable must be set when USE_LOCAL_LLM or USE_AZURE_OPENAI is set to true") |
32 |
| - |
33 |
| -# if not using local LLM, set up the semantic kernel |
34 |
| -if useLocalLLM: |
35 |
| - print("Using Local LLM") |
36 |
| -else: |
37 |
| - print("Using OpenAI and setting up Semantic Kernel") |
38 |
| - # Load environment variables from .env file |
39 |
| - load_dotenv() |
40 |
| - |
41 |
| - # Initialize the semantic kernel |
42 |
| - kernel: sk.Kernel = sk.Kernel() |
43 |
| - |
44 |
| - kernel = sk.Kernel() |
45 |
| - |
46 |
| - # Get the Azure OpenAI deployment name, API key, and endpoint or OpenAI org id from environment variables |
47 |
| - api_key: str = os.environ.get("OPENAI_API_KEY") |
48 |
| - useAzureAD: str = os.environ.get("USE_AZURE_AD") |
49 |
| - |
50 |
| - if (isinstance(api_key, str) == False or api_key == "") and (isinstance(useAzureAD, str) == False or useAzureAD == ""): |
51 |
| - raise Exception("OPENAI_API_KEY environment variable must be set") |
52 |
| - |
53 |
| - if not useAzureOpenAI: |
54 |
| - org_id = os.environ.get("OPENAI_ORG_ID") |
55 |
| - if isinstance(org_id, str) == False or org_id == "": |
56 |
| - raise Exception("OPENAI_ORG_ID environment variable must be set when USE_AZURE_OPENAI is set to False") |
57 |
| - # Add the OpenAI text completion service to the kernel |
58 |
| - kernel.add_chat_service("dv", OpenAIChatCompletion("gpt-3.5-turbo", api_key, org_id)) |
59 |
| - |
60 |
| - else: |
61 |
| - deployment: str = os.environ.get("AZURE_OPENAI_DEPLOYMENT_NAME") |
62 |
| - # Add the Azure OpenAI text completion service to the kernel |
63 |
| - if isinstance(useAzureAD, str) == True and useAzureAD.lower() == "true": |
64 |
| - print("Authenticating to Azure OpenAI with Azure AD Workload Identity") |
65 |
| - credential = DefaultAzureCredential() |
66 |
| - access_token = credential.get_token("https://cognitiveservices.azure.com/.default") |
67 |
| - kernel.add_chat_service("dv", AzureChatCompletion(deployment_name=deployment, endpoint=endpoint, api_key=access_token.token, ad_auth=True)) |
68 |
| - else: |
69 |
| - print("Authenticating to Azure OpenAI with OpenAI API key") |
70 |
| - kernel.add_chat_service("dv", AzureChatCompletion(deployment, endpoint, api_key)) |
71 |
| - |
| 8 | +# initialize the model that would be used for the app |
| 9 | +kernel, useLocalLLM, endpoint = get_llm() |
| 10 | +if not useLocalLLM: |
72 | 11 | # Import semantic skills from the "skills" directory
|
73 | 12 | skills_directory: str = "skills"
|
74 | 13 | productFunctions: dict = kernel.import_semantic_skill_from_directory(skills_directory, "ProductSkill")
|
|
0 commit comments