- Paper link: https://arxiv.org/abs/1809.10341
- Author's code repo (in Pytorch): https://github.com/PetarV-/DGI
Run with following:
# use tensorflow backend
TL_BACKEND=paddle python dgi_trainer.py --dataset cora --lr 0.002 --patience 50
TL_BACKEND=paddle python dgi_trainer.py --dataset citeseer --lr 0.0005 --patience 20 --n_epoch 300
TL_BACKEND=paddle python dgi_trainer.py --dataset pubmed --lr 0.001 --hidden_dim 256 --patience 20
# use paddle backend
TL_BACKEND=tensorflow python dgi_trainer.py --dataset cora --lr 0.003 --patience 50
TL_BACKEND=tensorflow python dgi_trainer.py --dataset citeseer --lr 0.001 --patience 20 --n_epoch 100
TL_BACKEND=tensorflow python dgi_trainer.py --dataset pubmed --hidden_dim 256 --lr 0.001
# use pytorch backend
TL_BACKEND=torch python dgi_trainer.py --dataset cora
TL_BACKEND=torch python dgi_trainer.py --dataset citeseer
TL_BACKEND=torch python dgi_trainer.py --dataset pubmed --lr 0.001 --patience 20
Dataset | Cora | Citeseer | Pubmed |
---|---|---|---|
Author's Code | 82.3 | 71.8 | 76.8 |
DGL | 81.6 | 69.4 | 76.1 |
GammaGL(tf) | 81.51 ± 0.55 | 69.01 ± 0.91 | 78.37 ± 0.37 |
GammaGL(th) | --.- | --.- | 79.58 ± 0.52 |
GammaGL(pd) | 81.19 ± 0.64 | 69.06 ± 0.50 | 78.58 ± 0.65 |
GammaGL(ms) | --.- | --.- | --.- |
- The model performance is the average of 5 tests