-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmain.py
181 lines (157 loc) · 4.78 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
from typing import List
import numpy as np
import segmentation_models as sm
import tensorflow as tf
import tensorflow_addons as tfa
from keras.callbacks import (
Callback,
CSVLogger,
EarlyStopping,
ModelCheckpoint,
ReduceLROnPlateau,
TensorBoard,
)
from keras.losses import Loss
from keras.optimizers import Optimizer
from config import Config
from source.augmentations import Stages, get_transforms
from source.dataset import create_tvi_data, get_data_generator
from source.model import get_model
from source.utils import seed_everything
def get_tf_dataset(
data, preprocessing, input_size, batch_size, prefetch_buffer, num_workers
) -> tf.data.Dataset:
return (
tf.data.Dataset.from_generator(
lambda: get_data_generator(data, preprocessing=preprocessing),
output_types=(tf.float32, tf.float32),
output_shapes=(
[input_size, input_size, 3],
[input_size, input_size, 2],
),
)
.map(lambda x, y: (x, y), num_parallel_calls=num_workers)
.prefetch(buffer_size=prefetch_buffer)
.batch(batch_size)
)
def get_optimizer(
steps_per_epoch, init_lr, max_lr, reduction=1.2, factor=8
) -> Optimizer:
# clr = tfa.optimizers.CyclicalLearningRate(
# initial_learning_rate=init_lr,
# maximal_learning_rate=max_lr,
# scale_fn=lambda x: 1 / (reduction ** (x - 1)),
# step_size=factor * steps_per_epoch,
# )
# return tf.keras.optimizers.Adam(clr)
return tf.keras.optimizers.Adam(init_lr)
def get_callbacks(
path_to_weights,
path_to_csv,
path_to_tb,
cp_monitor: str = "val_loss",
cp_mode: str = "min",
) -> List[Callback]:
return [
EarlyStopping(patience=200, restore_best_weights=True, verbose=1),
ModelCheckpoint(
path_to_weights,
save_best_only=True,
save_weights_only=True,
verbose=1,
monitor=cp_monitor,
mode=cp_mode,
),
CSVLogger(
path_to_csv,
separator="\t",
),
TensorBoard(path_to_tb),
ReduceLROnPlateau(
monitor=cp_monitor,
factor=0.9,
patience=10,
verbose=0,
mode=cp_mode,
min_delta=0.0001,
cooldown=0,
min_lr=5e-5,
),
]
def get_loss() -> Loss:
dice_loss = sm.losses.DiceLoss(class_weights=np.array([0.8, 0.2]))
focal_loss = sm.losses.CategoricalFocalLoss()
total_loss = dice_loss + (1 * focal_loss)
return total_loss
def get_metrics():
return [
sm.metrics.FScore(threshold=0.5),
]
def write_completion_status(folder: str, status: str):
with open(f"{folder}/complete.txt", "w") as file:
file.write(status)
if __name__ == "__main__":
C = Config()
sm.set_framework("tf.keras")
seed_everything(C.SEED)
preprocess_input, model = get_model(
C.MODEL_TYPE, C.BACKBONE, C.N_CLASSES, C.ACTIVATION
)
model.summary()
total_loss = get_loss()
metrics = get_metrics()
train_transform = get_transforms(C.TRAIN_IMAGE_SIZE, Stages.TRAIN)
valid_transform = get_transforms(C.INFER_IMAGE_SIZE, Stages.VALID)
train_data, valid_data, infer_data = create_tvi_data(
train_folder=C.TRAIN_FOLDER,
valid_folder=C.VALID_FOLDER,
infer_folder=C.INFER_FOLDER,
train_transform=train_transform,
valid_transform=valid_transform,
infer_transform=valid_transform,
)
train_dataset = get_tf_dataset(
train_data,
preprocess_input,
C.TRAIN_IMAGE_SIZE,
C.TRAIN_BATCH_SIZE,
C.PREFETCH_BUFFER,
C.NUM_WORKERS,
)
valid_dataset = get_tf_dataset(
valid_data,
preprocess_input,
C.INFER_IMAGE_SIZE,
C.INFER_BATCH_SIZE,
C.PREFETCH_BUFFER,
C.NUM_WORKERS,
)
steps_per_epoch = len(train_data) // C.TRAIN_BATCH_SIZE
optimizer = get_optimizer(
steps_per_epoch, C.LR, C.MAX_LR, reduction=C.REDUCTION, factor=C.FACTOR
)
callbacks = get_callbacks(
C.WEIGHTS,
C.LOGS_CSV,
C.LOGS_TB,
cp_monitor=C.MONITOR_METRIC,
cp_mode=C.METRIC_MODE,
)
C.dump()
try:
model.compile(optimizer, total_loss, metrics=metrics)
history = model.fit(
train_dataset,
epochs=C.EPOCHS,
verbose=1,
validation_data=valid_dataset,
callbacks=callbacks,
)
if history is not None:
C.save_history(history)
write_completion_status(C.FOLDER, "complete")
except KeyboardInterrupt:
write_completion_status(C.FOLDER, "interupted")
except Exception as ex:
write_completion_status(C.FOLDER, str(ex))
raise ex