Skip to content

Latest commit

 

History

History
133 lines (103 loc) · 5.24 KB

README.md

File metadata and controls

133 lines (103 loc) · 5.24 KB

Performance Record

Conformer Result

  • Feature info: using fbank feature, dither, cmvn, online speed perturb
  • Training info: lr 0.002, batch size 18, 4 gpu, acc_grad 4, 240 epochs, dither 0.1
  • Decoding info: ctc_weight 0.5, average_num 20
  • Git hash: 919f07c4887ac500168ba84b39b535fd8e58918a
decoding mode CER
attention decoder 5.18
ctc greedy search 4.94
ctc prefix beam search 4.94
attention rescoring 4.61
LM + attention rescoring 4.36

U2++ Conformer Result

  • Feature info: using fbank feature, dither=1.0, cmvn, oneline speed perturb
  • Training info: lr 0.001, batch size 16, 8 gpu, acc_grad 1, 360 epochs
  • Decoding info: ctc_weight 0.3, reverse_weight 0.5 average_num 30
  • Git hash: 5a1342312668e7a5abb83aed1e53256819cebf95
decoding mode/chunk size full 16
ctc greedy search 5.19 5.81
ctc prefix beam search 5.17 5.81
attention rescoring 4.63 5.05
LM + attention rescoring 4.40 4.75

Unified Conformer Result

  • Feature info: using fbank feature, dither=0, cmvn, oneline speed perturb
  • Training info: lr 0.001, batch size 16, 8 gpu, acc_grad 1, 180 epochs, dither 0.0
  • Decoding info: ctc_weight 0.5, average_num 20
  • Git hash: 919f07c4887ac500168ba84b39b535fd8e58918a
decoding mode/chunk size full 16 8 4
attention decoder 5.40 5.60 5.74 5.86
ctc greedy search 5.56 6.29 6.68 7.10
ctc prefix beam search 5.57 6.30 6.67 7.10
attention rescoring 5.05 5.45 5.69 5.91
LM + attention rescoring 4.73 5.08 5.22 5.38

U2++ Transformer Result

  • Feature info: using fbank feature, dither, cmvn, online speed perturb.
  • Training info: lr 0.001, batch size 26, 8 gpu, acc_grad 1, 360 epochs, dither 0.1
  • Decoding info: ctc_weight 0.2, reverse_weight 0.5, average_num 30
  • Git hash: 65270043fc8c2476d1ab95e7c39f730017a670e0
decoding mode/chunk size full 16
ctc greedy search 6.05 6.92
ctc prefix beam search 6.05 6.90
attention rescoring 5.11 5.63
LM + attention rescoring 4.82 5.24

Transformer Result

  • Feature info: using fbank feature, dither, with cmvn, online speed perturb.
  • Training info: lr 0.002, batch size 26, 4 gpu, acc_grad 4, 240 epochs, dither 0.1
  • Decoding info: ctc_weight 0.5, average_num 20
  • Git hash: 919f07c4887ac500168ba84b39b535fd8e58918a
decoding mode CER
attention decoder 5.69
ctc greedy search 5.92
ctc prefix beam search 5.91
attention rescoring 5.30
LM + attention rescoring 5.04

Unified Transformer Result

  • Feature info: using fbank feature, dither=0, with cmvn, online speed perturb.
  • Training info: lr 0.002, batch size 16, 4 gpu, acc_grad 1, 240 epochs, dither 0.1
  • Decoding info: ctc_weight 0.5, average_num 20
  • Git hash: 919f07c4887ac500168ba84b39b535fd8e58918a
decoding mode/chunk size full 16 8 4
attention decoder 6.04 6.35 6.45 6.70
ctc greedy search 6.28 6.99 7.39 7.89
ctc prefix beam search 6.28 6.98 7.40 7.89
attention rescoring 5.52 6.05 6.28 6.62
LM + attention rescoring 5.11 5.59 5.86 6.17

AMP Training Transformer Result

  • Feature info: using fbank feature, dither, cmvn, online speed perturb
  • Training info: lr 0.002, batch size, 4 gpus, acc_grad 4, 240 epochs, dither 0.1, warm up steps 25000
  • Decoding info: ctc_weight 0.5, average_num 20
  • Git hash: 1bb4e5a269c535340fae5b0739482fa47733d2c1
decoding mode CER
attention decoder 5.73
ctc greedy search 5.92
ctc prefix beam search 5.92
attention rescoring 5.31

Muilti-machines Training Conformer Result

  • Feature info: using fbank feature, dither, cmvn, online speed perturb
  • Training info: lr 0.004, batch size 16, 2 machines, 8*2=16 gpus, acc_grad 4, 240 epochs, dither 0.1, warm up steps 10000
  • Decoding info: ctc_weight 0.5, average_num 20
  • Git hash: f6b1409023440da1998d31abbcc3826dd40aaf35
decoding mode CER
attention decoder 4.90
ctc greedy search 5.07
ctc prefix beam search 5.06
attention rescoring 4.65

Conformer with/without Position Encoding Result

  • Feature info: using fbank feature, dither, cmvn, online speed perturb
  • Training info: lr 0.002, batch size 16, 8 gpu, acc_grad 4, 240 epochs, dither 0.1
  • Decoding info: ctc_weight 0.5, average_num 20
decoding mode with PE without PE
attention decoder 5.18 5.73
ctc greedy search 4.94 4.97
ctc prefix beam search 4.94 4.97
attention rescoring 4.61 4.69