-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathvideo detection.py
42 lines (28 loc) · 1.7 KB
/
video detection.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
import cv2
video = cv2.VideoCapture(0)
classificadorFace = cv2.CascadeClassifier('cascades\haarcascade_frontalface_default.xml')
classificadorOlho = cv2.CascadeClassifier('cascades\haarcascade_eye.xml')
classificadorSorriso = cv2.CascadeClassifier('cascades\haarcascade_smile.xml')
while True:
i = 1
conectado, frame = video.read()
frameCinza = cv2.cvtColor(frame, cv2.COLOR_BGR2GRAY)
facesDetectadas = classificadorFace.detectMultiScale(frame, minSize=(20, 20), scaleFactor=1.3, minNeighbors=5)
for (x, y, l, a) in facesDetectadas:
font = cv2.FONT_HERSHEY_SIMPLEX
cv2.putText(frame, 'People [{}]'.format(i), (x, y - 15), font, 0.5, (255, 255, 255), 1, cv2.LINE_AA)
cv2.rectangle(frame, (x, y), (x + l, y + a), (0, 0, 255), 2)
regiao = frame[y:y + a, x:x + l]
olhosDetecatados = classificadorOlho.detectMultiScale(regiao, minSize=(20, 20), scaleFactor=1.3, minNeighbors=15)
i += 1
for (ox, oy, ol, oa) in olhosDetecatados:
cv2.putText(frame, 'Eyes [{}]'.format(len(olhosDetecatados)), (x, y - 35), font, 0.5, (255, 255, 255), 1, cv2.LINE_AA)
cv2.rectangle(regiao, (ox, oy), (ox + ol, oy + oa), (255, 0, 0), 1)
sorrisosDetectados = classificadorSorriso.detectMultiScale(regiao, minSize=(40, 40), scaleFactor=1.7, minNeighbors=25)
for (ex, ey, el, ea) in sorrisosDetectados:
cv2.putText(frame, 'Smile [{}]'.format(len(sorrisosDetectados)), (x, y - 55), font, 0.5, (255, 255, 255), 1, cv2.LINE_AA)
cv2.rectangle(regiao, (ex, ey), (ex + el, ey + ea), (0, 255, 0), 1)
cv2.imwrite(str(i)+'.jpg', frame)
cv2.imshow('image', frame)
if cv2.waitKey(1) == ord('q'):
break