|
1 |
| -# MonoRec: Semi-Supervised Dense Reconstruction in Dynamic Environments from a Single Moving Camera |
| 1 | +# MonoRec |
| 2 | +[**Paper**](https://arxiv.org/abs/2011.11814) | [**Video** (CVPR)](https://youtu.be/XimdlXUamo0) | [**Video** (Reconstruction)](https://youtu.be/-gDSBIm0vgk) | [**Project Page**](https://vision.in.tum.de/research/monorec) |
2 | 3 |
|
3 |
| -Official repository. Code will be published soon. |
| 4 | +This repository is the official implementation of the paper: |
| 5 | + |
| 6 | +> **MonoRec: Semi-Supervised Dense Reconstruction in Dynamic Environments from a Single Moving Camera** |
| 7 | +> |
| 8 | +> [Felix Wimbauer*](https://www.linkedin.com/in/felixwimbauer), [Nan Yang*](https://vision.in.tum.de/members/yangn), [Lukas Von Stumberg](https://vision.in.tum.de/members/stumberg), [Niclas Zeller](https://vision.in.tum.de/members/zellern) and [Daniel Cremers](https://vision.in.tum.de/members/cremers) |
| 9 | +> |
| 10 | +> [**CVPR 2021** (arXiv)](https://arxiv.org/abs/2011.11814) |
| 11 | +
|
| 12 | +<a href="https://youtu.be/-gDSBIm0vgk"><div style="text-align:center"><img src="./pictures/frames.gif" style="height:auto;width:50%"/><img src="./pictures/pointcloud.gif" style="height:auto;width:50%"/></div></a> |
| 13 | + |
| 14 | +If you find our work useful, please consider citing our paper: |
| 15 | +``` |
| 16 | +@InProceedings{wimbauer2020monorec, |
| 17 | + title = {{MonoRec}: Semi-Supervised Dense Reconstruction in Dynamic Environments from a Single Moving Camera}, |
| 18 | + author = {Wimbauer, Felix and Yang, Nan and von Stumberg, Lukas and Zeller, Niclas and Cremers, Daniel}, |
| 19 | + booktitle = {IEEE Conference on Computer Vision and Pattern Recognition (CVPR)}, |
| 20 | + year = {2021}, |
| 21 | +} |
| 22 | +``` |
| 23 | + |
| 24 | +## 🏗️️ Setup |
| 25 | + |
| 26 | +The `conda` environment for this project can be setup by running the following command: |
| 27 | + |
| 28 | +```shell |
| 29 | +conda env create -f environment.yml |
| 30 | +``` |
| 31 | + |
| 32 | +## 🏃 Running the Example Script |
| 33 | + |
| 34 | +We provide a sample from the KITTI Odometry test set and a script to run MonoRec on it in ``example/``. |
| 35 | +To download the pretrained model and put it into the right place, run ``download_model.sh``. |
| 36 | +You can manually do this by can by downloading the weights from [here](https://vision.in.tum.de/_media/research/monorec/monorec_depth_ref.pth.zip) |
| 37 | +and unpacking the file to ``saved/checkpoints/monorec_depth_ref.pth``. |
| 38 | +The example script will plot the keyframe, depth prediction and mask prediction. |
| 39 | + |
| 40 | +```shell |
| 41 | +cd example |
| 42 | +python test_monorec.py |
| 43 | +``` |
| 44 | + |
| 45 | +## 🗃️ Data |
| 46 | + |
| 47 | +In all of our experiments we used the KITTI Odometry dataset for training. For additional evaluations, we used the KITTI, Oxford RobotCar, |
| 48 | +TUM Mono-VO and TUM RGB-D datasets. All datapaths can be specified in the respective configuration files. In our experiments, we put all datasets into a seperate folder ```../data```. |
| 49 | + |
| 50 | +### KITTI Odometry |
| 51 | + |
| 52 | +To setup KITTI Odometry, download the color images and calibration files from the |
| 53 | +[official website](http://www.cvlibs.net/datasets/kitti/eval_odometry.php) (around 145 GB). Instead of the given |
| 54 | +velodyne laser data files, we use the improved ground truth depth for evaluation, which can be downloaded from |
| 55 | +[here](http://www.cvlibs.net/datasets/kitti/eval_depth_all.php). |
| 56 | + |
| 57 | +Unzip the color images and calibration files into ```../data```. The lidar depth maps can be extracted into the given |
| 58 | +folder structure by running ```data_loader/scripts/preprocess_kitti_extract_annotated_depth.py```. |
| 59 | + |
| 60 | +For training and evaluation, we use the poses estimated by [Deep Virtual Stereo Odometry (DVSO)](https://vision.in.tum.de/research/vslam/dvso). They can be downloaded |
| 61 | +from [here](https://vision.in.tum.de/_media/research/monorec/poses_dvso.zip) and should be placed under ``../data/{kitti_path}/poses_dso``. This folder structure is ensured when |
| 62 | +unpacking the zip file in the ``{kitti_path}`` directory. |
| 63 | + |
| 64 | +The auxiliary moving object masks can be downloaded from [here](https://vision.in.tum.de/_media/research/monorec/mvobj_mask.zip). They should be placed under |
| 65 | +``../data/{kitti_path}/sequences/{seq_num}/mvobj_mask``. This folder structure is ensured when |
| 66 | +unpacking the zip file in the ``{kitti_path}`` directory. |
| 67 | + |
| 68 | +### Oxford RobotCar |
| 69 | + |
| 70 | + |
| 71 | +To setup Oxford RobotCar, download the camera model files and the large sample from |
| 72 | +[the official website](https://robotcar-dataset.robots.ox.ac.uk/downloads/). Code, as well as, camera extrinsics need to be downloaded |
| 73 | +from the [official GitHub repository](https://github.com/ori-mrg/robotcar-dataset-sdk). |
| 74 | +Please move the content of the ``python`` folder to ``data_loaders/oxford_robotcar/``. |
| 75 | +``extrinsics/``, ``models/`` and ``sample/`` need to be moved to ``../data/oxford_robotcar/``. Note that for poses we |
| 76 | +use the official visual odometry poses, which are not provided in the large sample. They need to be downloaded manually from |
| 77 | +[the raw dataset](http://mrgdatashare.robots.ox.ac.uk/download/?filename=datasets/2014-12-12-10-45-15/2014-12-12-10-45-15_vo.tar) |
| 78 | +and unpacked into the sample folder. |
| 79 | + |
| 80 | +### TUM Mono-VO |
| 81 | + |
| 82 | +Unfortunately, TUM Mono-VO images are provided only in the original, distorted form. Therefore, they need to be undistorted |
| 83 | +first before fed into MonoRec. To obtain poses for the sequences, we run the publicly available version |
| 84 | +of [Direct Sparse Odometry](https://github.com/JakobEngel/dso). |
| 85 | + |
| 86 | +### TUM RGB-D |
| 87 | + |
| 88 | +The official sequences can be downloaded from [the official website](https://vision.in.tum.de/data/datasets/rgbd-dataset/download) |
| 89 | +and need to be unpacked under ``../data/tumrgbd/{sequence_name}``. Note that our provided dataset implementation assumes |
| 90 | +intrinsics from ``fr3`` sequences. Note that the data loader for this dataset also relies on the code from the Oxford Robotcar dataset. |
| 91 | + |
| 92 | +## 🏋️ Training & Evaluation |
| 93 | + |
| 94 | +**Please stay tuned! Training code will be published soon!** |
| 95 | + |
| 96 | +We provide checkpoints for each training stage: |
| 97 | + |
| 98 | +| Training stage | Download | |
| 99 | +| --- | --- | |
| 100 | +| Depth Bootstrap | [Link](https://vision.in.tum.de/_media/research/monorec/monorec_depth.pth.zip) | |
| 101 | +| Mask Bootstrap | [Link](https://vision.in.tum.de/_media/research/monorec/monorec_mask.pth.zip) | |
| 102 | +| Mask Refinement | [Link](https://vision.in.tum.de/_media/research/monorec/monorec_mask_ref.pth.zip) | |
| 103 | +| Depth Refinement (**final model**) | [Link](https://vision.in.tum.de/_media/research/monorec/monorec_depth_ref.pth.zip) | |
| 104 | + |
| 105 | +Run ``download_model.sh`` to download the final model. It will automatically get moved to ``saved/checkpoints``. |
| 106 | + |
| 107 | +To reproduce the evaluation results on different datasets, run the following commands: |
| 108 | + |
| 109 | +```shell |
| 110 | +python evaluate.py --config configs/evaluate/eval_monorec.json # KITTI Odometry |
| 111 | +python evaluate.py --config configs/evaluate/eval_monorec_oxrc.json # Oxford Robotcar |
| 112 | +``` |
| 113 | + |
| 114 | +## ☁️ Pointclouds |
| 115 | + |
| 116 | +To reproduce the pointclouds depicted in the paper and video, use the following commands: |
| 117 | + |
| 118 | +```shell |
| 119 | +python create_pointcloud.py --config configs/test/pointcloud_monorec.json # KITTI Odometry |
| 120 | +python create_pointcloud.py --config configs/test/pointcloud_monorec_oxrc.json # Oxford Robotcar |
| 121 | +python create_pointcloud.py --config configs/test/pointcloud_monorec_tmvo.json # TUM Mono-VO |
| 122 | +``` |
0 commit comments