Skip to content

Latest commit

 

History

History

detection

Folders and files

NameName
Last commit message
Last commit date

parent directory

..
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

DPT for Object Detection

Here is our code for ImageNet classification. Please check our paper for detailed information.

Instructions

Preparations

First, install pytorch as for classification.

conda install pytorch==1.7.1 torchvision==0.8.2 cudatoolkit=10.1 -c pytorch
pip install timm==0.3.2

We develop our method under environment mmcv==1.2.7 and mmdet==2.8.0. We recommand you this document for detailed instructions.

Evaluation

To evaluate RetinaNet on COCO val2017 with 8 gpus run:

./dist_test.sh /path/to/config/file /path/to/checkpoint_file 8 --eval bbox

For example, to evaluate RetinaNet with DPT-Tiny:

./dist_test.sh configs/retinanet_dpt_t_fpn_1x_coco.py pretrained/detection/retinanet_dpt_t_1x.pth 8 --eval bbox

To evaluate Mask R-CNN on COCO val2017 with 8 gpus run:

./dist_test.sh /path/to/config/file /path/to/checkpoint_file 8 --eval bbox segm

For example, to evaluate Mask R-CNN with DPT-Tiny:

./dist_test.sh configs/mask_rcnn_dpt_t_fpn_1x_coco.py pretrained/detection/mrcnn_dpt_t_1x.pth 8 --eval bbox segm

Training

Train with certain config file:

dist_train.sh /path/to/config/file $NUM_GPUS

For example, to train DPT-Small + Mask R-CNN on COCO train2017 for 12 epochs with 8 gpus:

dist_train.sh configs/mask_rcnn_dpt_s_fpn_1x_coco.py 8

Results and Models

RetinaNet Results

Method #Params (M) Schedule mAP AP50 AP75 APs APm APl Download
DPT-Tiny 24.9 1x 39.5 60.4 41.8 23.7 43.2 52.2 Google Drive
DPT-Tiny 24.9 MS+3x 41.2 62.0 44.0 25.7 44.6 53.9 Google Drive
DPT-Small 36.1 1x 42.5 63.6 45.3 26.2 45.7 56.9 Google Drive
DPT-Small 36.1 MS+3x 43.3 64.0 46.5 27.8 46.3 58.5 Google Drive
DPT-Medium 55.9 1x 43.3 64.6 45.9 27.2 46.7 58.6 Google Drive
DPT-Medium 55.9 MS+3x 43.7 64.6 46.4 27.2 47.0 58.4 Google Drive

Mask R-CNN Results

Method #Params (M) Schedule box mAP box AP50 box AP75 mask mAP mask AP50 mask AP75 Download
DPT-Tiny 34.8 1x 40.2 62.8 43.8 37.7 59.8 40.4 Google Drive
DPT-Tiny 34.8 MS+3x 42.2 64.4 46.1 39.4 61.5 42.3 Google Drive
DPT-Small 46.1 1x 43.1 65.7 47.2 39.9 62.9 43.0 Google Drive
DPT-Small 46.1 MS+3x 44.4 66.5 48.9 41.0 63.6 44.2 Google Drive
DPT-Medium 65.8 1x 43.8 66.2 48.3 40.3 63.1 43.4 Google Drive
DPT-Medium 65.8 MS+3x 44.3 65.6 48.8 40.7 63.1 44.1 Google Drive

Other links

These models can also be obtained from BaiduNetdisk. Password for extraction is DPTs. Our result is pretrained on the ImageNet1k dataset. ImageNet1k-pretrained models can be found here.