Skip to content

Files

Latest commit

 

History

History
196 lines (157 loc) · 4.56 KB

README.md

File metadata and controls

196 lines (157 loc) · 4.56 KB

Gaze Estimation Experiment Application

This application collects facial landmark data for gaze estimation research using MediaPipe and OpenCV. It provides a complete workflow for conducting multi-trial gaze estimation experiments with multiple subjects.

Note: This application is designed for Windows systems only.

Features

Data Collection

  • MediaPipe face mesh detection with iris landmarks
  • Real-time visualization of facial and iris landmarks
  • Automatic data organization by subject and trial
  • Support for multiple trials per subject
  • Progress tracking for experimental combinations

Experimental Setup

  • Configurable camera angles, e.g.:
    • Yaw: 0°, ±15°, ±30°
    • Pitch: 0°, ±15°, ±30°
  • Multiple subject distances, e.g.: 30cm, 60cm, 90cm
  • Real-time face detection validation
  • Visual feedback for proper subject positioning

Experiment Workflow

  1. Metadata Collection

    • Experimenter information
    • Subject demographics
    • Vision information
    • Session notes
    • Automatic system information collection
  2. Trial Setup

    • Live landmark visualization
    • Camera angle guidance
    • Distance verification
    • Setup validation
    • Progress tracking
    • Prevents duplicate angle/distance combinations
  3. Gaze Data Collection

    • 3x3 grid dot display
    • Randomized dot presentation
    • Configurable display and rest times
    • Automatic landmark recording
    • Trial-by-trial data saving
  4. Session Management

    • Multiple trials per subject
    • New subject initialization
    • Session continuation options
    • Progress tracking
    • Session summary

Installation

  1. Clone the repository:
git clone <repository-url>
cd gaze-estimation-app
  1. Create a virtual environment (recommended):
python -m venv venv
source venv/bin/activate  # On Windows: venv\Scripts\activate
  1. Install dependencies:
pip install -r requirements.txt

Usage

  1. Run the application:
python main.py
  1. Experiment Workflow: a. Enter experimenter and subject information b. Configure camera setup (angle and distance) c. Validate setup using landmark visualization d. Run the trial e. Choose to:
    • Continue with next trial
    • Start new subject
    • End session

Project Structure

gaze-data_collector/
├── main.py                 # Application entry point
├── metadata_window.py      # Subject and experimenter data collection
├── setup_window.py         # Camera and position setup
├── experiment_window.py    # Gaze data collection
├── data_manager.py         # Data organization and storage
├── requirements.txt        # Project dependencies
└── README.md               # Documentation

Data Structure

Data is organized as follows:

YYYYMMDD_GazeEstimationExperiment/
└── SubjectID/
    ├── Metadata.json           # Subject and session information
    ├── Trial_001/
    │   ├── setup_config.json   # Camera angles and distance
    │   └── landmark_data.csv   # MediaPipe outputs, dot positions and timestamps
    ├── Trial_002/
    └── ...

Data Files

  1. Metadata.json

    • Subject demographics
    • Experimenter information
    • Session timestamp
    • Software versions
    • Session notes
  2. setup_config.json

    • Trial identifier
    • Camera angles (yaw, pitch)
    • Subject distance
    • Experiment parameters
  3. landmark_data.csv

    • Timestamps
    • 468 facial landmarks (x, y, z)
    • Iris landmarks
    • Target dot positions

Requirements

  • Windows 10 or later
  • Python 3.8 or higher
  • High-quality webcam (1080p recommended)
  • Digital inclinometer for angle measurement
  • Screen size measurement tools
  • Distance measurement tools
  • Adequate lighting conditions

Technical Dependencies

  • OpenCV
  • MediaPipe
  • PyQt5
  • NumPy
  • Screeninfo

Experimental Details

Camera Angles

  • Yaw: 0°, ±15°, ±30°
  • Pitch: 0°, ±15°, ±30°
  • Total angle combinations: 25

Subject Distances

  • Near: 30cm
  • Medium: 60cm
  • Far: 90cm

Gaze Target

  • 3x3 grid pattern
  • Randomized presentation
  • 2-second display time
  • 1-second rest period

Best Practices

  1. Environment Setup

    • Consistent lighting
    • Minimal background distractions
    • Stable camera mounting
  2. Subject Positioning

    • Use distance markers
    • Verify face is centered
    • Check iris detection quality
  3. Data Collection

    • Validate setup before each trial
    • Monitor landmark detection quality
    • Allow breaks between trials
    • Save data frequently

License

This work is licensed under the Apache 2.0 license.