Skip to content

Commit c81d918

Browse files
committed
update
1 parent 861e8bf commit c81d918

File tree

4 files changed

+10
-2
lines changed

4 files changed

+10
-2
lines changed

.DS_Store

2 KB
Binary file not shown.

README.md

+10-2
Original file line numberDiff line numberDiff line change
@@ -1,18 +1,25 @@
11
# Towards Efficient and Scale-Robust Ultra-High-Definition Image Demoiréing
22

33
### [Project Page](https://xinyu-andy.github.io/uhdm-page/) | [Dataset](https://drive.google.com/drive/folders/1DyA84UqM7zf3CeoEBNmTi_dJ649x2e7e?usp=sharing) | [Paper](https://arxiv.org/pdf/2207.09935)
4+
[![PWC](https://img.shields.io/endpoint.svg?url=https://paperswithcode.com/badge/towards-efficient-and-scale-robust-ultra-high/image-restoration-on-uhdm)](https://paperswithcode.com/sota/image-restoration-on-uhdm?p=towards-efficient-and-scale-robust-ultra-high)
5+
[![PWC](https://img.shields.io/endpoint.svg?url=https://paperswithcode.com/badge/towards-efficient-and-scale-robust-ultra-high/image-enhancement-on-tip-2018)](https://paperswithcode.com/sota/image-enhancement-on-tip-2018?p=towards-efficient-and-scale-robust-ultra-high)
46

57
**Towards Efficient and Scale-Robust Ultra-High-Definition Image Demoireing** (ECCV 2022)
68
Xin Yu, Peng Dai, Wenbo Li, Lan Ma, Jiajun Shen, Jia Li, [Xiaojuan Qi](https://scholar.google.com/citations?user=bGn0uacAAAAJ&hl=en)
79

810
![Example 1](./figures/result.png)
11+
![Gif 1](./figures/1080p.gif)
912

1013
## :hourglass_flowing_sand: To Do
1114
- [x] Release training code
1215
- [x] Release testing code
1316
- [x] Release dataset
1417
- [x] Release pre-trained models
15-
- [ ] Release an improved model trained on combined datasets
18+
- [x] Release an improved model trained on combined datasets
19+
- [x] Add an online demo :hugs:
20+
21+
## :rocket: :rocket: :rocket: **News**:
22+
- **July. 31, 2022**: Add an online demo in [HuggingFace Space :hugs:](https://huggingface.co/spaces/ECCV2022/Screen_Image_Demoireing), which allows testing via an interactive window. Note the demo runs on CPU, so the inference may cost 80s per 4K image. The demo model was trained on combined datasets for more robust qualitative performance.
1623

1724

1825
## Introduction
@@ -123,9 +130,10 @@ or you can also specify the value of `LOAD_PATH` to directly load a pre-trained
123130

124131
## Extended link:
125132
If you want to remove moire patterns in your video, you can try our CVPR 2022 work: [VDMoire](https://github.com/CVMI-Lab/VideoDemoireing)
133+
![vdmoire](./figures/vdmoire.gif)
126134

127135
## Citation
128-
Please cite the following papers if you feel this repository useful.
136+
Please consider :grimacing: staring this repository and citing the following papers if you feel this repository useful.
129137

130138
```
131139
@inproceedings{Yu2022TowardsEA,

figures/1080p.gif

4.1 MB
Loading

figures/vdmoire.gif

8.47 MB
Loading

0 commit comments

Comments
 (0)