-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtrain_model.py
83 lines (67 loc) · 2.13 KB
/
train_model.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
import pandas as pd
import numpy as np
from sklearn.model_selection import train_test_split
from sklearn.preprocessing import StandardScaler, LabelEncoder
from sklearn.ensemble import RandomForestClassifier
import joblib
# Load and prepare data
df = pd.read_csv('geophonesensordata.csv')
features = ['mean', 'top_3_mean', 'min', 'max', 'std_dev', 'median',
'q1', 'q3', 'skewness', 'dominant_freq', 'energy']
X = df[features]
y = df['activity']
# Encode categorical target
le = LabelEncoder()
y = le.fit_transform(y)
# Split data
X_train, X_test, y_train, y_test = train_test_split(
X, y, test_size=0.2, random_state=42)
# Scale features
scaler = StandardScaler()
X_train_scaled = scaler.fit_transform(X_train)
X_test_scaled = scaler.transform(X_test)
# Train Random Forest model
rf_model = RandomForestClassifier(n_estimators=100, random_state=42)
rf_model.fit(X_train_scaled, y_train)
# Evaluate
train_score = rf_model.score(X_train_scaled, y_train)
test_score = rf_model.score(X_test_scaled, y_test)
print(f'Train accuracy: {train_score:.3f}')
print(f'Test accuracy: {test_score:.3f}')
# Save model and scaler
joblib.dump(rf_model, 'rf_model.joblib')
joblib.dump(scaler, 'scaler.joblib')
joblib.dump(le, 'label_encoder.joblib')
# Prediction function
def predict_activity(data_dict):
"""
Predict activity from sensor readings
data_dict: Dictionary containing sensor readings matching feature names
"""
# Load saved models
model = joblib.load('rf_model.joblib')
scaler = joblib.load('scaler.joblib')
le = joblib.load('label_encoder.joblib')
# Prepare input
input_df = pd.DataFrame([data_dict])
scaled_input = scaler.transform(input_df)
# Predict
prediction = model.predict(scaled_input)
activity = le.inverse_transform(prediction)[0]
return activity
# Example usage
sample_data = {
'mean': 0.5,
'top_3_mean': 0.8,
'min': -1,
'max': 2,
'std_dev': 0.3,
'median': 0.4,
'q1': 0.2,
'q3': 0.7,
'skewness': 0.1,
'dominant_freq': 20.5,
'energy': 1.2
}
predicted_activity = predict_activity(sample_data)
print(f'Predicted activity: {predicted_activity}')