-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathMASTER_SCRIPT_Python2x.py
354 lines (308 loc) · 17.2 KB
/
MASTER_SCRIPT_Python2x.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
#-------------------------------------------------------------------------------
# Name: MASTER SCRIPT Python 2.7
# Purpose:
#
# https://stackoverflow.com/questions/73306198/how-to-delete-a-particular-column-in-csv-file-without-pandas-library
# https://www.w3schools.com/python/pandas/pandas_cleaning_empty_cells.asp
#
#-------------------------------------------------------------------------------
# -*- coding: utf-8 -*-
# ---------------------------------------------------------------------------
# Description:
# Author: Sean Eagles
# takes an input CSV and runs through a geodatabase and back out to clean
# the table properly, simplify the output fields and make it work with
# Joins and relates.
# ---------------------------------------------------------------------------
import dbf
import arcpy
import csv
import pandas as pd
import urllib2
from contextlib import closing
import geojson
import arcpy
def main():
pass
def download_url(url, save_path):
with closing(urllib2.urlopen(url)) as dl_file:
with open(save_path, 'wb') as out_file:
out_file.write(dl_file.read())
# Parameters/Variables
#
csv_path = (r"C:\temp\records.csv")
OutFolderPath = "C:/TEMP/"
OutName = "Records.gdb"
InputCSV = OutFolderPath + "records_remove_empty.csv"
GeoDataBase = OutFolderPath + OutName
GDBTableName = "records_cleaned_of_columns"
GDBOutputTableName = "records_column_and_rows_clean"
GDBInputTableName = "records_column_and_rows_clean"
GDBTablePathAndName = GeoDataBase + "/" + GDBTableName
GDBTableOutputPathAndName = GeoDataBase + "/" + GDBOutputTableName
GDBTableInputPathAndName = GeoDataBase + "/" + GDBInputTableName
ExcelOutputTable = OutFolderPath + "records.xls"
DBFName = "records_clean.dbf"
data = "C:/TEMP/records.csv"
data_out = "C:/TEMP/records_remove_empty.csv"
print "GeoDataBase path = " + GeoDataBase
print "Input CSV = " + InputCSV
print "GDB Name = " + OutName
print "Output Folder Path = " + OutFolderPath
print "Geodatabase Table Name (Cleaned columns) = " + GDBTableName
print "Geodatabase table path and name (Cleaned Columns) = " + GDBTablePathAndName
print "Geodatabase table output path and name (cleaned columns and rows) = " + GDBTableOutputPathAndName
print "Geodatabase table input path and name = " + GDBTableInputPathAndName
print "Excel output table (xls) = " + ExcelOutputTable
print csv_path + " = csv_path"
print "Data table input = " + data
print "Data table output = " + data_out
if __name__ == '__main__':
with open(csv_path) as instream:
# Setup the input
reader = csv.DictReader(instream)
rows = list(reader)
# Setup the output fields
output_fields = reader.fieldnames
output_fields.remove("features_type")
output_fields.remove("features_geometry_type")
output_fields.remove("features_geometry_coordinates")
output_fields.remove("features_properties_title_en")
output_fields.remove("features_properties_title_fr")
output_fields.remove("features_properties_description_en")
output_fields.remove("features_properties_description_fr")
output_fields.remove("features_properties_keywords_en")
output_fields.remove("features_properties_keywords_fr")
output_fields.remove("features_properties_topicCategory")
output_fields.remove("features_properties_parentIdentifier")
output_fields.remove("features_properties_date_published_text")
output_fields.remove("features_properties_date_published_date")
output_fields.remove("features_properties_date_created_text")
output_fields.remove("features_properties_date_created_date")
output_fields.remove("features_properties_date_revision_text")
output_fields.remove("features_properties_date_revision_date")
output_fields.remove("features_properties_date_notavailable_text")
output_fields.remove("features_properties_date_notavailable_date")
output_fields.remove("features_properties_date_inforce_text")
output_fields.remove("features_properties_date_inforce_date")
output_fields.remove("features_properties_date_adopted_text")
output_fields.remove("features_properties_date_adopted_date")
output_fields.remove("features_properties_date_deprecated_text")
output_fields.remove("features_properties_date_deprecated_date")
output_fields.remove("features_properties_date_superceded_text")
output_fields.remove("features_properties_date_superceded_date")
output_fields.remove("features_properties_spatialRepresentation")
output_fields.remove("features_properties_type")
output_fields.remove("features_properties_geometry")
output_fields.remove("features_properties_temporalExtent_begin")
output_fields.remove("features_properties_temporalExtent_end")
output_fields.remove("features_properties_refSys")
output_fields.remove("features_properties_refSys_version")
output_fields.remove("features_properties_status")
output_fields.remove("features_properties_maintenance")
output_fields.remove("features_properties_metadataStandard_en")
output_fields.remove("features_properties_metadataStandard_fr")
output_fields.remove("features_properties_metadataStandardVersion")
output_fields.remove("features_properties_otherConstraints_en")
output_fields.remove("features_properties_otherConstraints_fr")
output_fields.remove("features_properties_graphicOverview")
output_fields.remove("features_properties_distributionFormat_name")
output_fields.remove("features_properties_distributionFormat_format")
output_fields.remove("features_properties_useLimits_en")
output_fields.remove("features_properties_useLimits_fr")
output_fields.remove("features_properties_accessConstraints")
output_fields.remove("features_properties_dateStamp")
output_fields.remove("features_properties_dataSetURI")
output_fields.remove("features_properties_locale_language")
output_fields.remove("features_properties_locale_country")
output_fields.remove("features_properties_locale_encoding")
output_fields.remove("features_properties_language")
output_fields.remove("features_properties_characterSet")
output_fields.remove("features_properties_environmentDescription")
output_fields.remove("features_properties_supplementalInformation_en")
output_fields.remove("features_properties_supplementalInformation_fr")
output_fields.remove("features_properties_contact")
output_fields.remove("features_properties_credits")
output_fields.remove("features_properties_cited")
output_fields.remove("features_properties_distributor")
output_fields.remove("features_properties_options")
output_fields.remove("features_properties_temporalExtent_end_@indeterminatePosition")
output_fields.remove("features_properties_temporalExtent_end_#text")
output_fields.remove("features_properties_plugins")
output_fields.remove("features_properties_sourceSystemName")
output_fields.remove("features_popularity")
output_fields.remove("features_similarity")
with open(csv_path, "w") as outstream:
# Setup the output
writer = csv.DictWriter(
outstream,
fieldnames=output_fields,
extrasaction="ignore", # Ignore extra dictionary keys/values
)
# Write to the output
writer.writeheader()
writer.writerows(rows)
df = pd.read_csv(data)
new_df = df.dropna()
print(new_df.to_string())
new_df.to_csv(data_out)
# Create a file GDB for ease of use.
#
arcpy.CreateFileGDB_management(OutFolderPath, OutName, out_version="CURRENT")
print "Created a file GDB for ease of use"
# Convert to GDB table for ease of use
#
arcpy.TableToTable_conversion(InputCSV,GeoDataBase, GDBTableName, where_clause="", field_mapping='Field1 "Field1" true true false 4 Long 0 0 ,First,#,C:\TEMP\records_remove_empty.csv,Field1,-1,-1;features_properties_id "features_properties_id" true true false 8000 Text 0 0 ,First,#,C:\TEMP\records_remove_empty.csv,features_properties_id,-1,-1', config_keyword="")
print "Converted to GDB table for ease of use"
# Create a clean table with all of the elements that you don't need queried out
#
arcpy.TableSelect_analysis(GDBTablePathAndName, GDBTableOutputPathAndName, where_clause="features_properties_id NOT LIKE 'ccmeo%' AND features_properties_id NOT LIKE 'CGDI%' AND features_properties_id NOT LIKE 'eodms%' AND features_properties_id IS NOT NULL")
print " Cleaned table of all rows that are not to be used in this process"
# add field to table, old field is too long at 8000 characters
#
arcpy.AddField_management(GDBTableInputPathAndName, field_name="Feature_ID", field_type="TEXT", field_precision="", field_scale="", field_length="256", field_alias="", field_is_nullable="NULLABLE", field_is_required="NON_REQUIRED", field_domain="")
print "Add a field to be a better length as opposed to 8000 characters, 256 characters now."
# Calculate field to hold all values from original ID field from csv table
#
arcpy.CalculateField_management(GDBTableInputPathAndName, field="Feature_ID", expression="!features_properties_id!", expression_type="PYTHON_9.3", code_block="")
print "Move field values over to Feature_ID from original field"
# Delete extraineous fields
#
arcpy.DeleteField_management(GDBTableInputPathAndName, drop_field="Field1;features_properties_id;Unnamed__0")
print "Delete extraneous fields"
# Convert cleaned table to Excel file
#
arcpy.TableToExcel_conversion(GDBTableInputPathAndName, ExcelOutputTable, Use_field_alias_as_column_header="NAME", Use_domain_and_subtype_description="CODE")
print "Excel table output created"
# GDB table to DBF for interoperability
#
arcpy.TableToTable_conversion(GDBTableInputPathAndName, OutFolderPath, DBFName, where_clause="", field_mapping='Feature_ID "Feature_ID" true true false 256 Text 0 0 ,First,#,C:\TEMP\Records.gdb\records_column_and_rows_clean,Feature_ID,-1,-1', config_keyword="")
print "DBF table exported for interoperability"
# Variables:
#
# to do: change hardcoded to variables
FOLDER = "C:/TEMP"
FILENAME = "catalogue_scrape.dbf"
CATALOGUE_SCRAPE = FOLDER + "//" + FILENAME
#filename_geocore = "34c0dbf2-9595-84f3-679c-7d2d7c90ecfe.geojson" #worked
#filename_geocore = "000183ed-8864-42f0-ae43-c4313a860720.geojson" #worked
#filename_geocore = "cebc283f-bae1-4eae-a91f-a26480cd4e4a.geojson" #worked
#filename_geocore = "2606b1b4-c895-4d23-b466-ad3d64b6381e.geojson" #worked
#filename_geocore = "08166334-889d-4c3a-9b25-b1b85ba48f2c.geojson" #worked
#filename_geocore = "05002515-f6cc-4516-b225-38d510eaaf9c.geojson" #worked
#filename_geocore = "090494a6-8aaf-4c26-b7b3-cf52400bf619.geojson" #worked
#filename_geocore = "054cf636-6637-2508-9aef-0f9139734f4a.geojson" #worked, 42 records long
#filename_geocore = "02d6f853-b0fe-4aa4-bc73-dff0db45d8ae.geojson"
#filename_geocore = "d2af02fe-9e12-413d-8959-06be963bde52.geojson"
FILENAME_GEOCORE = "9e1507cd-f25c-4c64-995b-6563bf9d65bd.geojson"
FILEID = str("9e1507cd-f25c-4c64-995b-6563bf9d65bd")
GEOJSON_URL = 'https://geocore.metadata.geo.ca/' + str(FILENAME_GEOCORE)
SAVE_PATH = "C:/TEMP/{}".format(FILENAME_GEOCORE)
FILE_ID = str(FILENAME_GEOCORE)
#cgp_encoding = ""
# now download the geojson file and save it to the TEMP directory
#
download_url(GEOJSON_URL, SAVE_PATH)
with open(SAVE_PATH) as f:
GEOJSON = geojson.load(f)
ITEM_DICTIONARY = GEOJSON
OPTIONS_COUNT = len(ITEM_DICTIONARY['features'][0]['properties']['options'])
print str(OPTIONS_COUNT) + " = options count"
URL_COUNT = OPTIONS_COUNT
print "URL count for all options = " + str(URL_COUNT)
PROTOCOL_COUNT = OPTIONS_COUNT
print "PROTOCOL count for all options = " + str(PROTOCOL_COUNT)
NAME_COUNT = OPTIONS_COUNT
print "NAME count for all options = " + str(NAME_COUNT)
DESCRIPTION_COUNT = len(ITEM_DICTIONARY['features'][0]['properties']['options'][0]['description'])
DESCRIPTION_COUNT = DESCRIPTION_COUNT * OPTIONS_COUNT
print "DESCRIPTION count for all options = " + str(DESCRIPTION_COUNT)
print "Downloaded geoJSON GeoCore file"
print "URL = " + str(GEOJSON_URL)
print "save_path = " + str(SAVE_PATH)
#We now have every attribute counted from the original GeoJSON.
#We are going to create an attribute table to hold all of this data.
#We are going to use the name_count attribute as a number to define how many
#rows we are going to add to the attribute table.
#For this example the number of rows to add is
print "Number of lines to be added " + unicode(NAME_COUNT)
#the name_count attribute"""
# Set DBF encoding from ASCII to UTF-8, also created new DBF table
#
dbf.Table(r'C:\TEMP\catalogue_scrape.dbf', 'FILENAME C(100); FILEID C(254); URL C(254); PROTOCOL C(100); NAME C(254); NAME_EN C(254); NAME_FR C(254); DESC_ C(254); DESC_EN C(254); DESC_FR C(254); ROWID_ C(10)', codepage=0xf0)
print "Table created, catalogue_scrape.dbf"
# Create insert cursor for table
#
ROWS = arcpy.InsertCursor(r"C:\TEMP\catalogue_scrape.dbf")
# Create new rows based off of how many names
# exist in the options attributes.
#
for x in range(0, NAME_COUNT):
row = ROWS.newRow()
ROWS.insertRow(row)
# Delete cursor and row objects to remove locks on the data
#
del row
del ROWS
ROWS = arcpy.UpdateCursor(r"C:\TEMP\catalogue_scrape.dbf")
for row in ROWS:
row.setValue("FILENAME", SAVE_PATH)
row.setValue("FILEID", str(FILEID))
ROWS.updateRow(row)
del row
del ROWS
FEATURE = 0
while FEATURE < OPTIONS_COUNT:
ROWS = arcpy.UpdateCursor(r"C:\TEMP\catalogue_scrape.dbf")
ROW_NUMBER = 0
print str(ROW_NUMBER) + " = row number in catalo"
print str(OPTIONS_COUNT) + " = options count"
print str(FEATURE) + " = feature counter"
print "inside loop1"
for row in ROWS:
print "inside loop2"
#url = gj['features'][0]['properties']['options'][int(feature)]['url']
#print str(feature) + " = feature"
print str(ROW_NUMBER) + " = row number"
if FEATURE == ROW_NUMBER and FEATURE < OPTIONS_COUNT:
print "inside if statement"
print FEATURE
url = GEOJSON['features'][0]['properties']['options'][int(FEATURE)]['url']
protocol = GEOJSON['features'][0]['properties']['options'][int(FEATURE)]['protocol']
name_en = GEOJSON['features'][0]['properties']['options'][int(FEATURE)]['name']['en']
name_fr = GEOJSON['features'][0]['properties']['options'][int(FEATURE)]['name']['fr']
name = unicode(GEOJSON['features'][0]['properties']['options'][int(FEATURE)]['name']['en']) + unicode(GEOJSON['features'][0]['properties']['options'][int(FEATURE)]['name']['fr'])
print name + " = name"
description_en = GEOJSON['features'][0]['properties']['options'][int(FEATURE)]['description']['en']
description_fr = GEOJSON['features'][0]['properties']['options'][int(FEATURE)]['description']['fr']
description = unicode(description_en) + unicode(description_fr)
print description + " = description"
row.setValue("NAME", name)
row.setValue("NAME_EN", name_en)
row.setValue("NAME_FR", name_fr)
row.setValue("DESC_", description)
row.setValue("DESC_EN", description_en)
row.setValue("DESC_FR", description_fr)
row.setValue("PROTOCOL", protocol)
row.setValue("URL", url)
row.setValue("ROWID_", FEATURE)
ROWS.updateRow(row)
print "url = " + str(url)
FEATURE = FEATURE + 1
ROW_NUMBER = ROW_NUMBER + 1
print str(ROW_NUMBER) + " = row number"
print str(FEATURE) + " = feature number"
#print "Option count = " + str(options_count)
#print "Feature = " + str(feature)
#options = GEOJSON['features'][0]['properties']['options'][int(feature)]
print "url count = " + str(URL_COUNT)
#print options
del row
del ROWS
# Clean up all files that are not needed and should be deleted after this
# process is done
arcpy.Delete_management(in_data="C:/TEMP/Records.gdb", data_type="Workspace")
arcpy.Delete_management(in_data="C:/TEMP/Records.gdb", data_type="Folder")
arcpy.Delete_management(in_data="C:/TEMP/records.csv", data_type="TextFile")
arcpy.Delete_management(in_data="C:/TEMP/records.xls", data_type="File")
arcpy.Delete_management(in_data="C:/TEMP/records_remove_empty.csv", data_type="TextFile")