-
Notifications
You must be signed in to change notification settings - Fork 70
Description
Style Inconsistency
Just a suggestion for improvement in code commenting.
Evidence
- Inconsistent block comments
Lines 54 to 61 in 725a6e4
import java.util.List; | |
/*** | |
* Dataset | |
* https://www.kaggle.com/zhangjuefei/birds-bones-and-living-habits | |
* | |
* @author BoonKhai Yeoh | |
*/ | |
Lines 57 to 76 in 725a6e4
/** | |
* Author: Kian Yang, Lee | |
* Binary Classification Task with Heart Disease DataSet | |
* | |
****************************************************** | |
* | |
* This is a binary classification task example of using feedforward neural network. | |
* The code for dataset loading and preparation was done for you. | |
* Also, the code to iterate through training epochs and evaluating the model were provided. | |
* | |
* Please complete this exercise by configuring a neural network that can perform a binary classification task. | |
* Take special note of the different input and output number that is required in order to run the dataset | |
* successfully. | |
* | |
* Remember to uncomment certain parts of code to run the entire script. | |
* | |
* ***************************************************** | |
*/ | |
cdle-traininglabs/dl4j-labs/src/main/java/ai/certifai/training/datavec/kfold/SimpleKFoldDemo.java
Lines 37 to 45 in 725a6e4
/* | |
* | |
* TASKS: | |
* ----- | |
* 1. Load data using getDataSet() method. | |
* 2. create a kFoldIterator object. (set k=5) | |
* 3. loop through the kFoldIterator and print out the observations for each training set and test set. | |
* | |
* */ |
- Inconsistent end-of-line comments
cdle-traininglabs/dl4j-labs/src/main/java/ai/certifai/training/classification/Multiclass.java
Lines 93 to 98 in 725a6e4
// #### Apply normalization here #### | |
//===================================================================== | |
// Step 2: Define Model | |
//===================================================================== | |
Lines 121 to 128 in 725a6e4
// 5. ======== build and initialise the model ======== | |
MultiLayerNetwork model = build_model(weightsArray); // call the function to build the model | |
model.init(); | |
// 6. ======== configure listener (UI & Training Loss Value) ======== | |
StatsStorage statsStorage = new InMemoryStatsStorage(); |
cdle-traininglabs/dl4j-labs/src/main/java/ai/certifai/training/earlyStopping/EarlyStopping.java
Lines 99 to 103 in 725a6e4
//========================================================================= | |
// Step 1 : Build Schema to prepare the data | |
//========================================================================= | |
//Build Schema to prepare the data |
- Inconsistent method documentation comment
Lines 199 to 208 in 725a6e4
/* | |
* ================================= | |
* List of functions to be used | |
* ================================= | |
*/ | |
/* | |
************** 1. function to load data ************** | |
*/ | |
private static RecordReader load_data(String filepath) throws Exception{ |
cdle-traininglabs/dl4j-labs/src/main/java/ai/certifai/training/generative/MnistGAN.java
Lines 151 to 155 in 725a6e4
/** | |
* Returns a network config that takes in a 10x10 random number and produces a 28x28 grayscale image. | |
* @return config | |
*/ | |
private static MultiLayerConfiguration generator() { |
Possible solution
Just follow one of the styles and make it all consistent.
Styling references: