-
Notifications
You must be signed in to change notification settings - Fork 44
/
Copy pathRNN_utils.py
46 lines (40 loc) · 1.64 KB
/
RNN_utils.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
from __future__ import print_function
import numpy as np
# method for generating text
def generate_text(model, length, vocab_size, ix_to_char):
# starting with random character
ix = [np.random.randint(vocab_size)]
y_char = [ix_to_char[ix[-1]]]
X = np.zeros((1, length, vocab_size))
for i in range(length):
# appending the last predicted character to sequence
X[0, i, :][ix[-1]] = 1
print(ix_to_char[ix[-1]], end="")
ix = np.argmax(model.predict(X[:, :i+1, :])[0], 1)
y_char.append(ix_to_char[ix[-1]])
return ('').join(y_char)
# method for preparing the training data
def load_data(data_dir, seq_length):
data = open(data_dir, 'r').read()
chars = list(set(data))
VOCAB_SIZE = len(chars)
print('Data length: {} characters'.format(len(data)))
print('Vocabulary size: {} characters'.format(VOCAB_SIZE))
ix_to_char = {ix:char for ix, char in enumerate(chars)}
char_to_ix = {char:ix for ix, char in enumerate(chars)}
X = np.zeros((len(data)/seq_length, seq_length, VOCAB_SIZE))
y = np.zeros((len(data)/seq_length, seq_length, VOCAB_SIZE))
for i in range(0, len(data)/seq_length):
X_sequence = data[i*seq_length:(i+1)*seq_length]
X_sequence_ix = [char_to_ix[value] for value in X_sequence]
input_sequence = np.zeros((seq_length, VOCAB_SIZE))
for j in range(seq_length):
input_sequence[j][X_sequence_ix[j]] = 1.
X[i] = input_sequence
y_sequence = data[i*seq_length+1:(i+1)*seq_length+1]
y_sequence_ix = [char_to_ix[value] for value in y_sequence]
target_sequence = np.zeros((seq_length, VOCAB_SIZE))
for j in range(seq_length):
target_sequence[j][y_sequence_ix[j]] = 1.
y[i] = target_sequence
return X, y, VOCAB_SIZE, ix_to_char