-
Notifications
You must be signed in to change notification settings - Fork 231
/
Copy pathvector_invariant_advection.jl
458 lines (361 loc) · 25.2 KB
/
vector_invariant_advection.jl
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
# These are also used in Coriolis/hydrostatic_spherical_coriolis.jl
struct EnergyConserving{FT} <: AbstractAdvectionScheme{1, FT} end
struct EnstrophyConserving{FT} <: AbstractAdvectionScheme{1, FT} end
EnergyConserving(FT::DataType = Float64) = EnergyConserving{FT}()
EnstrophyConserving(FT::DataType = Float64) = EnstrophyConserving{FT}()
struct VectorInvariant{N, FT, M, Z, ZS, V, K, D, U} <: AbstractAdvectionScheme{N, FT}
vorticity_scheme :: Z # reconstruction scheme for vorticity flux
vorticity_stencil :: ZS # stencil used for assessing vorticity smoothness
vertical_scheme :: V # recontruction scheme for vertical advection
kinetic_energy_gradient_scheme :: K # reconstruction scheme for kinetic energy gradient
divergence_scheme :: D # reconstruction scheme for divergence flux
upwinding :: U # treatment of upwinding for divergence flux and kinetic energy gradient
function VectorInvariant{N, FT, M}(vorticity_scheme::Z,
vorticity_stencil::ZS,
vertical_scheme::V,
kinetic_energy_gradient_scheme::K,
divergence_scheme::D,
upwinding::U) where {N, FT, M, Z, ZS, V, K, D, U}
return new{N, FT, M, Z, ZS, V, K, D, U}(vorticity_scheme,
vorticity_stencil,
vertical_scheme,
kinetic_energy_gradient_scheme,
divergence_scheme,
upwinding)
end
end
"""
VectorInvariant(; vorticity_scheme = EnstrophyConserving(),
vorticity_stencil = VelocityStencil(),
vertical_scheme = EnergyConserving(),
divergence_scheme = vertical_scheme,
kinetic_energy_gradient_scheme = divergence_scheme,
upwinding = OnlySelfUpwinding(; cross_scheme = divergence_scheme),
multi_dimensional_stencil = false)
Return a vector-invariant momentum advection scheme.
Keyword arguments
=================
- `vorticity_scheme`: Scheme used for `Center` reconstruction of vorticity. Default: `EnstrophyConserving()`. Options:
* `UpwindBiased()`
* `WENO()`
* `EnergyConserving()`
* `EnstrophyConserving()`
- `vorticity_stencil`: Stencil used for smoothness indicators for `WENO` schemes. Default: `VelocityStencil()`. Options:
* `VelocityStencil()` (smoothness based on horizontal velocities)
* `DefaultStencil()` (smoothness based on variable being reconstructed)
- `vertical_scheme`: Scheme used for vertical advection of horizontal momentum. Default: `EnergyConserving()`.
- `kinetic_energy_gradient_scheme`: Scheme used for kinetic energy gradient reconstruction. Default: `vertical_scheme`.
- `divergence_scheme`: Scheme used for divergence flux. Only upwinding schemes are supported. Default: `vorticity_scheme`.
- `upwinding`: Treatment of upwinded reconstruction of divergence and kinetic energy gradient. Default: `OnlySelfUpwinding()`. Options:
* `CrossAndSelfUpwinding()`
* `OnlySelfUpwinding()`
- `multi_dimensional_stencil`: whether or not to use a horizontal two-dimensional stencil for the reconstruction
of vorticity, divergence and kinetic energy gradient. Currently the "tangential"
direction uses 5th-order centered WENO reconstruction. Default: false
Examples
========
```jldoctest
julia> using Oceananigans
julia> VectorInvariant()
Vector Invariant, Dimension-by-dimension reconstruction
Vorticity flux scheme:
└── Oceananigans.Advection.EnstrophyConserving{Float64}
Vertical advection / Divergence flux scheme:
└── Oceananigans.Advection.EnergyConserving{Float64}
```
```jldoctest
julia> using Oceananigans
julia> VectorInvariant(vorticity_scheme = WENO(), vertical_scheme = WENO(order = 3))
Vector Invariant, Dimension-by-dimension reconstruction
Vorticity flux scheme:
├── WENO(order=5)
└── smoothness ζ: Oceananigans.Advection.VelocityStencil()
Vertical advection / Divergence flux scheme:
├── WENO(order=3)
└── upwinding treatment: OnlySelfUpwinding
KE gradient and Divergence flux cross terms reconstruction:
└── Centered(order=2)
Smoothness measures:
├── smoothness δU: FunctionStencil f = divergence_smoothness
├── smoothness δV: FunctionStencil f = divergence_smoothness
├── smoothness δu²: FunctionStencil f = u_smoothness
└── smoothness δv²: FunctionStencil f = v_smoothness
```
"""
function VectorInvariant(; vorticity_scheme = EnstrophyConserving(),
vorticity_stencil = VelocityStencil(),
vertical_scheme = EnergyConserving(),
divergence_scheme = vertical_scheme,
kinetic_energy_gradient_scheme = divergence_scheme,
upwinding = OnlySelfUpwinding(; cross_scheme = divergence_scheme),
multi_dimensional_stencil = false)
N = max(required_halo_size_x(vorticity_scheme),
required_halo_size_y(vorticity_scheme),
required_halo_size_x(divergence_scheme),
required_halo_size_y(divergence_scheme),
required_halo_size_x(kinetic_energy_gradient_scheme),
required_halo_size_y(kinetic_energy_gradient_scheme),
required_halo_size_z(vertical_scheme))
FT = eltype(vorticity_scheme)
return VectorInvariant{N, FT, multi_dimensional_stencil}(vorticity_scheme,
vorticity_stencil,
vertical_scheme,
kinetic_energy_gradient_scheme,
divergence_scheme,
upwinding)
end
# buffer eltype
# VectorInvariant{N, FT, M (multi-dimensionality)
const MultiDimensionalVectorInvariant = VectorInvariant{<:Any, <:Any, true}
# VectorInvariant{N, FT, M, Z (vorticity scheme)
const VectorInvariantEnergyConserving = VectorInvariant{<:Any, <:Any, <:Any, <:EnergyConserving}
const VectorInvariantEnstrophyConserving = VectorInvariant{<:Any, <:Any, <:Any, <:EnstrophyConserving}
const VectorInvariantUpwindVorticity = VectorInvariant{<:Any, <:Any, <:Any, <:AbstractUpwindBiasedAdvectionScheme}
# VectorInvariant{N, FT, M, Z, ZS, V (vertical scheme)
const VectorInvariantVerticalEnergyConserving = VectorInvariant{<:Any, <:Any, <:Any, <:Any, <:Any, <:EnergyConserving}
# VectorInvariant{N, FT, M, Z, ZS, V, K (kinetic energy gradient scheme)
const VectorInvariantKEGradientEnergyConserving = VectorInvariant{<:Any, <:Any, <:Any, <:Any, <:Any, <:Any, <:EnergyConserving}
const VectorInvariantKineticEnergyUpwinding = VectorInvariant{<:Any, <:Any, <:Any, <:Any, <:Any, <:Any, <:AbstractUpwindBiasedAdvectionScheme}
# VectorInvariant{N, FT, M, Z, ZS, V, K, D, U (upwinding)
const VectorInvariantCrossVerticalUpwinding = VectorInvariant{<:Any, <:Any, <:Any, <:Any, <:Any, <:Any, <:Any, <:AbstractUpwindBiasedAdvectionScheme, <:CrossAndSelfUpwinding}
const VectorInvariantSelfVerticalUpwinding = VectorInvariant{<:Any, <:Any, <:Any, <:Any, <:Any, <:Any, <:Any, <:AbstractUpwindBiasedAdvectionScheme, <:OnlySelfUpwinding}
Base.summary(a::VectorInvariant) = string("Vector Invariant, Dimension-by-dimension reconstruction")
Base.summary(a::MultiDimensionalVectorInvariant) = string("Vector Invariant, Multidimensional reconstruction")
Base.show(io::IO, a::VectorInvariant{N, FT}) where {N, FT} =
print(io, summary(a), " \n",
" Vorticity flux scheme: ", "\n",
" $(a.vorticity_scheme isa WENO ? "├" : "└")── $(summary(a.vorticity_scheme))",
" $(a.vorticity_scheme isa WENO ? "\n └── smoothness ζ: $(a.vorticity_stencil)\n" : "\n")",
" Vertical advection / Divergence flux scheme: ", "\n",
" $(a.vertical_scheme isa WENO ? "├" : "└")── $(summary(a.vertical_scheme))",
"$(a.vertical_scheme isa AbstractUpwindBiasedAdvectionScheme ?
"\n └── upwinding treatment: $(a.upwinding)" : "")")
#####
##### Convenience for WENO Vector Invariant
#####
nothing_to_default(user_value; default = nothing) = isnothing(user_value) ? default : user_value
"""
WENOVectorInvariant(FT = Float64;
upwinding = nothing,
vorticity_stencil = VelocityStencil(),
order = nothing,
vorticity_order = nothing,
vertical_order = nothing,
divergence_order = nothing,
kinetic_energy_gradient_order = nothing,
multi_dimensional_stencil = false,
weno_kw...)
Return a vector-invariant weighted essentially non-oscillatory (WENO) scheme.
See [`VectorInvariant`](@ref) and [`WENO`](@ref) for kwargs definitions.
If `multi_dimensional_stencil = true` is selected, then a 2D horizontal stencil
is implemented for the WENO scheme (instead of a 1D stencil). This 2D horizontal
stencil performs a centered 5th-order WENO reconstruction of vorticity,
divergence and kinetic energy in the horizontal direction tangential to the upwind direction.
"""
function WENOVectorInvariant(FT::DataType = Float64;
upwinding = nothing,
vorticity_stencil = VelocityStencil(),
order = nothing,
vorticity_order = nothing,
vertical_order = nothing,
divergence_order = nothing,
kinetic_energy_gradient_order = nothing,
multi_dimensional_stencil = false,
weno_kw...)
if isnothing(order) # apply global defaults
vorticity_order = nothing_to_default(vorticity_order, default = 9)
vertical_order = nothing_to_default(vertical_order, default = 5)
divergence_order = nothing_to_default(divergence_order, default = 5)
kinetic_energy_gradient_order = nothing_to_default(kinetic_energy_gradient_order, default = 5)
else # apply user supplied `order` unless overridden by more specific value
vorticity_order = nothing_to_default(vorticity_order, default = order)
vertical_order = nothing_to_default(vertical_order, default = order)
divergence_order = nothing_to_default(divergence_order, default = order)
kinetic_energy_gradient_order = nothing_to_default(kinetic_energy_gradient_order, default = order)
end
vorticity_scheme = WENO(FT; order=vorticity_order, weno_kw...)
vertical_scheme = WENO(FT; order=vertical_order, weno_kw...)
kinetic_energy_gradient_scheme = WENO(FT; order=kinetic_energy_gradient_order, weno_kw...)
divergence_scheme = WENO(FT; order=divergence_order, weno_kw...)
default_upwinding = OnlySelfUpwinding(cross_scheme = divergence_scheme)
upwinding = nothing_to_default(upwinding; default = default_upwinding)
schemes = (vorticity_scheme, vertical_scheme, kinetic_energy_gradient_scheme, divergence_scheme)
NX = maximum(required_halo_size_x(s) for s in schemes)
NY = maximum(required_halo_size_y(s) for s in schemes)
NZ = maximum(required_halo_size_z(s) for s in schemes)
N = max(NX, NY, NZ)
FT = eltype(vorticity_scheme) # assumption
return VectorInvariant{N, FT, multi_dimensional_stencil}(vorticity_scheme,
vorticity_stencil,
vertical_scheme,
kinetic_energy_gradient_scheme,
divergence_scheme,
upwinding)
end
# Since vorticity itself requires one halo, if we use an upwinding scheme (N > 1) we require one additional
# halo for vector invariant advection
@inline function required_halo_size_x(scheme::VectorInvariant)
Hx₁ = required_halo_size_x(scheme.vorticity_scheme)
Hx₂ = required_halo_size_x(scheme.divergence_scheme)
Hx₃ = required_halo_size_x(scheme.kinetic_energy_gradient_scheme)
Hx = max(Hx₁, Hx₂, Hx₃)
return Hx == 1 ? Hx : Hx + 1
end
@inline required_halo_size_y(scheme::VectorInvariant) = required_halo_size_x(scheme)
@inline required_halo_size_z(scheme::VectorInvariant) = required_halo_size_z(scheme.vertical_scheme)
Adapt.adapt_structure(to, scheme::VectorInvariant{N, FT, M}) where {N, FT, M} =
VectorInvariant{N, FT, M}(Adapt.adapt(to, scheme.vorticity_scheme),
Adapt.adapt(to, scheme.vorticity_stencil),
Adapt.adapt(to, scheme.vertical_scheme),
Adapt.adapt(to, scheme.kinetic_energy_gradient_scheme),
Adapt.adapt(to, scheme.divergence_scheme),
Adapt.adapt(to, scheme.upwinding))
on_architecture(to, scheme::VectorInvariant{N, FT, M}) where {N, FT, M} =
VectorInvariant{N, FT, M}(on_architecture(to, scheme.vorticity_scheme),
on_architecture(to, scheme.vorticity_stencil),
on_architecture(to, scheme.vertical_scheme),
on_architecture(to, scheme.kinetic_energy_gradient_scheme),
on_architecture(to, scheme.divergence_scheme),
on_architecture(to, scheme.upwinding))
@inline U_dot_∇u(i, j, k, grid, scheme::VectorInvariant, U) = horizontal_advection_U(i, j, k, grid, scheme, U.u, U.v) +
vertical_advection_U(i, j, k, grid, scheme, U) +
bernoulli_head_U(i, j, k, grid, scheme, U.u, U.v)
@inline U_dot_∇v(i, j, k, grid, scheme::VectorInvariant, U) = horizontal_advection_V(i, j, k, grid, scheme, U.u, U.v) +
vertical_advection_V(i, j, k, grid, scheme, U) +
bernoulli_head_V(i, j, k, grid, scheme, U.u, U.v)
# Extend interpolate functions for VectorInvariant to allow MultiDimensional reconstruction
for bias in (:_biased, :_symmetric)
for (dir1, dir2) in zip((:xᶠᵃᵃ, :xᶜᵃᵃ, :yᵃᶠᵃ, :yᵃᶜᵃ), (:y, :y, :x, :x))
interp_func = Symbol(bias, :_interpolate_, dir1)
multidim_interp = Symbol(:_multi_dimensional_reconstruction_, dir2)
@eval begin
@inline $interp_func(i, j, k, grid, ::VectorInvariant, interp_scheme, args...) =
$interp_func(i, j, k, grid, interp_scheme, args...)
@inline $interp_func(i, j, k, grid, ::MultiDimensionalVectorInvariant, interp_scheme, args...) =
$multidim_interp(i, j, k, grid, interp_scheme, $interp_func, args...)
end
end
end
#####
##### Vertical advection + Kinetic Energy gradient. 3 Formulations:
##### 1. Energy conserving
##### 2. Dimension-By-Dimension Divergence upwinding (Partial, Split or Full)
##### 3. Multi-Dimensional Divergence upwinding (Partial, Split or Full)
#####
#####
##### Conservative Kinetic Energy Gradient (1)
#####
@inline ϕ²(i, j, k, grid, ϕ) = @inbounds ϕ[i, j, k]^2
@inline Khᶜᶜᶜ(i, j, k, grid, u, v) = (ℑxᶜᵃᵃ(i, j, k, grid, ϕ², u) + ℑyᵃᶜᵃ(i, j, k, grid, ϕ², v)) / 2
@inline bernoulli_head_U(i, j, k, grid, ::VectorInvariantKEGradientEnergyConserving, u, v) = ∂xᶠᶜᶜ(i, j, k, grid, Khᶜᶜᶜ, u, v)
@inline bernoulli_head_V(i, j, k, grid, ::VectorInvariantKEGradientEnergyConserving, u, v) = ∂yᶜᶠᶜ(i, j, k, grid, Khᶜᶜᶜ, u, v)
#####
##### Conservative vertical advection
##### Follows https://mitgcm.readthedocs.io/en/latest/algorithm/algorithm.html#vector-invariant-momentum-equations
#####
@inbounds ζ₂wᶠᶜᶠ(i, j, k, grid, u, w) = ℑxᶠᵃᵃ(i, j, k, grid, Az_qᶜᶜᶠ, w) * ∂zᶠᶜᶠ(i, j, k, grid, u)
@inbounds ζ₁wᶜᶠᶠ(i, j, k, grid, v, w) = ℑyᵃᶠᵃ(i, j, k, grid, Az_qᶜᶜᶠ, w) * ∂zᶜᶠᶠ(i, j, k, grid, v)
@inline vertical_advection_U(i, j, k, grid, ::VectorInvariantVerticalEnergyConserving, U) = ℑzᵃᵃᶜ(i, j, k, grid, ζ₂wᶠᶜᶠ, U.u, U.w) / Azᶠᶜᶜ(i, j, k, grid)
@inline vertical_advection_V(i, j, k, grid, ::VectorInvariantVerticalEnergyConserving, U) = ℑzᵃᵃᶜ(i, j, k, grid, ζ₁wᶜᶠᶠ, U.v, U.w) / Azᶜᶠᶜ(i, j, k, grid)
#####
##### Upwinding vertical advection (2. and 3.)
#####
@inline function vertical_advection_U(i, j, k, grid, scheme::VectorInvariant, U)
Φᵟ = upwinded_divergence_flux_Uᶠᶜᶜ(i, j, k, grid, scheme, U.u, U.v)
𝒜ᶻ = δzᵃᵃᶜ(i, j, k, grid, _advective_momentum_flux_Wu, scheme.vertical_scheme, U.w, U.u)
return 1/Vᶠᶜᶜ(i, j, k, grid) * (Φᵟ + 𝒜ᶻ)
end
@inline function vertical_advection_V(i, j, k, grid, scheme::VectorInvariant, U)
Φᵟ = upwinded_divergence_flux_Vᶜᶠᶜ(i, j, k, grid, scheme, U.u, U.v)
𝒜ᶻ = δzᵃᵃᶜ(i, j, k, grid, _advective_momentum_flux_Wv, scheme.vertical_scheme, U.w, U.v)
return 1/Vᶜᶠᶜ(i, j, k, grid) * (Φᵟ + 𝒜ᶻ)
end
#####
##### Horizontal advection 4 formulations:
##### 1. Energy conservative
##### 2. Enstrophy conservative
##### 3. Dimension-By-Dimension Vorticity upwinding
##### 4. Two-Dimensional (x and y) Vorticity upwinding
#####
#####
##### Conserving schemes (1. and 2.)
##### Follows https://mitgcm.readthedocs.io/en/latest/algorithm/algorithm.html#vector-invariant-momentum-equations
#####
@inline ζ_ℑx_vᶠᶠᵃ(i, j, k, grid, u, v) = ζ₃ᶠᶠᶜ(i, j, k, grid, u, v) * ℑxᶠᵃᵃ(i, j, k, grid, Δx_qᶜᶠᶜ, v)
@inline ζ_ℑy_uᶠᶠᵃ(i, j, k, grid, u, v) = ζ₃ᶠᶠᶜ(i, j, k, grid, u, v) * ℑyᵃᶠᵃ(i, j, k, grid, Δy_qᶠᶜᶜ, u)
@inline horizontal_advection_U(i, j, k, grid, ::VectorInvariantEnergyConserving, u, v) = - ℑyᵃᶜᵃ(i, j, k, grid, ζ_ℑx_vᶠᶠᵃ, u, v) / Δxᶠᶜᶜ(i, j, k, grid)
@inline horizontal_advection_V(i, j, k, grid, ::VectorInvariantEnergyConserving, u, v) = + ℑxᶜᵃᵃ(i, j, k, grid, ζ_ℑy_uᶠᶠᵃ, u, v) / Δyᶜᶠᶜ(i, j, k, grid)
@inline horizontal_advection_U(i, j, k, grid, ::VectorInvariantEnstrophyConserving, u, v) = - ℑyᵃᶜᵃ(i, j, k, grid, ζ₃ᶠᶠᶜ, u, v) * ℑxᶠᵃᵃ(i, j, k, grid, ℑyᵃᶜᵃ, Δx_qᶜᶠᶜ, v) / Δxᶠᶜᶜ(i, j, k, grid)
@inline horizontal_advection_V(i, j, k, grid, ::VectorInvariantEnstrophyConserving, u, v) = + ℑxᶜᵃᵃ(i, j, k, grid, ζ₃ᶠᶠᶜ, u, v) * ℑyᵃᶠᵃ(i, j, k, grid, ℑxᶜᵃᵃ, Δy_qᶠᶜᶜ, u) / Δyᶜᶠᶜ(i, j, k, grid)
#####
##### Upwinding schemes (3. and 4.)
#####
@inline function horizontal_advection_U(i, j, k, grid, scheme::VectorInvariantUpwindVorticity, u, v)
Sζ = scheme.vorticity_stencil
@inbounds v̂ = ℑxᶠᵃᵃ(i, j, k, grid, ℑyᵃᶜᵃ, Δx_qᶜᶠᶜ, v) / Δxᶠᶜᶜ(i, j, k, grid)
ζᴿ = _biased_interpolate_yᵃᶜᵃ(i, j, k, grid, scheme, scheme.vorticity_scheme, bias(v̂), ζ₃ᶠᶠᶜ, Sζ, u, v)
return - v̂ * ζᴿ
end
@inline function horizontal_advection_V(i, j, k, grid, scheme::VectorInvariantUpwindVorticity, u, v)
Sζ = scheme.vorticity_stencil
@inbounds û = ℑyᵃᶠᵃ(i, j, k, grid, ℑxᶜᵃᵃ, Δy_qᶠᶜᶜ, u) / Δyᶜᶠᶜ(i, j, k, grid)
ζᴿ = _biased_interpolate_xᶜᵃᵃ(i, j, k, grid, scheme, scheme.vorticity_scheme, bias(û), ζ₃ᶠᶠᶜ, Sζ, u, v)
return + û * ζᴿ
end
#####
##### Fallback to flux form advection (LatitudeLongitudeGrid)
#####
@inline function U_dot_∇u(i, j, k, grid, advection::AbstractAdvectionScheme, U)
v̂ = ℑxᶠᵃᵃ(i, j, k, grid, ℑyᵃᶜᵃ, Δx_qᶜᶠᶜ, U.v) / Δxᶠᶜᶜ(i, j, k, grid)
û = @inbounds U.u[i, j, k]
return div_𝐯u(i, j, k, grid, advection, U, U.u) -
v̂ * v̂ * δxᶠᵃᵃ(i, j, k, grid, Δyᶜᶜᶜ) / Azᶠᶜᶜ(i, j, k, grid) +
v̂ * û * δyᵃᶜᵃ(i, j, k, grid, Δxᶠᶠᶜ) / Azᶠᶜᶜ(i, j, k, grid)
end
@inline function U_dot_∇v(i, j, k, grid, advection::AbstractAdvectionScheme, U)
û = ℑyᵃᶠᵃ(i, j, k, grid, ℑxᶜᵃᵃ, Δy_qᶠᶜᶜ, U.u) / Δyᶜᶠᶜ(i, j, k, grid)
v̂ = @inbounds U.v[i, j, k]
return div_𝐯v(i, j, k, grid, advection, U, U.v) +
û * v̂ * δxᶜᵃᵃ(i, j, k, grid, Δyᶠᶠᶜ) / Azᶜᶠᶜ(i, j, k, grid) -
û * û * δyᵃᶠᵃ(i, j, k, grid, Δxᶜᶜᶜ) / Azᶜᶠᶜ(i, j, k, grid)
end
#####
##### Fallback for `RectilinearGrid` with
##### ACAS == `AbstractCenteredAdvectionScheme`
##### AUAS == `AbstractUpwindBiasedAdvectionScheme`
#####
@inline U_dot_∇u(i, j, k, grid::RectilinearGrid, advection::ACAS, U) = div_𝐯u(i, j, k, grid, advection, U, U.u)
@inline U_dot_∇v(i, j, k, grid::RectilinearGrid, advection::ACAS, U) = div_𝐯v(i, j, k, grid, advection, U, U.v)
@inline U_dot_∇u(i, j, k, grid::RectilinearGrid, advection::AUAS, U) = div_𝐯u(i, j, k, grid, advection, U, U.u)
@inline U_dot_∇v(i, j, k, grid::RectilinearGrid, advection::AUAS, U) = div_𝐯v(i, j, k, grid, advection, U, U.v)
#####
##### No advection
#####
@inline U_dot_∇u(i, j, k, grid::AbstractGrid{FT}, scheme::Nothing, U) where FT = zero(FT)
@inline U_dot_∇v(i, j, k, grid::AbstractGrid{FT}, scheme::Nothing, U) where FT = zero(FT)
const UB{N} = UpwindBiased{N}
const UBX{N} = UpwindBiased{N, <:Any, <:Nothing}
const UBY{N} = UpwindBiased{N, <:Any, <:Any, <:Nothing}
const UBZ{N} = UpwindBiased{N, <:Any, <:Any, <:Any, <:Nothing}
const C{N} = Centered{N, <:Any}
const CX{N} = Centered{N, <:Any, <:Nothing}
const CY{N} = Centered{N, <:Any, <:Any, <:Nothing}
const CZ{N} = Centered{N, <:Any, <:Any, <:Any, <:Nothing}
const AS = AbstractSmoothnessStencil
# To adapt passing smoothness stencils to upwind biased schemes and centered schemes (not WENO)
for b in 1:6
@eval begin
@inline inner_symmetric_interpolate_xᶠᵃᵃ(i, j, k, grid, s::C{$b}, f::Function, idx, loc, ::AS, args...) = inner_symmetric_interpolate_xᶠᵃᵃ(i, j, k, grid, s, f, idx, loc, args...)
@inline inner_symmetric_interpolate_yᵃᶠᵃ(i, j, k, grid, s::C{$b}, f::Function, idx, loc, ::AS, args...) = inner_symmetric_interpolate_yᵃᶠᵃ(i, j, k, grid, s, f, idx, loc, args...)
@inline inner_symmetric_interpolate_zᵃᵃᶠ(i, j, k, grid, s::C{$b}, f::Function, idx, loc, ::AS, args...) = inner_symmetric_interpolate_zᵃᵃᶠ(i, j, k, grid, s, f, idx, loc, args...)
@inline inner_symmetric_interpolate_xᶠᵃᵃ(i, j, k, grid, s::CX{$b}, f::Function, idx, loc, ::AS, args...) = inner_symmetric_interpolate_xᶠᵃᵃ(i, j, k, grid, s, f, idx, loc, args...)
@inline inner_symmetric_interpolate_yᵃᶠᵃ(i, j, k, grid, s::CY{$b}, f::Function, idx, loc, ::AS, args...) = inner_symmetric_interpolate_yᵃᶠᵃ(i, j, k, grid, s, f, idx, loc, args...)
@inline inner_symmetric_interpolate_zᵃᵃᶠ(i, j, k, grid, s::CZ{$b}, f::Function, idx, loc, ::AS, args...) = inner_symmetric_interpolate_zᵃᵃᶠ(i, j, k, grid, s, f, idx, loc, args...)
@inline inner_biased_interpolate_xᶠᵃᵃ(i, j, k, grid, s::UB{$b}, bias, f::Function, idx, loc, ::AS, args...) = inner_biased_interpolate_xᶠᵃᵃ(i, j, k, grid, s, bias, f, idx, loc, args...)
@inline inner_biased_interpolate_yᵃᶠᵃ(i, j, k, grid, s::UB{$b}, bias, f::Function, idx, loc, ::AS, args...) = inner_biased_interpolate_yᵃᶠᵃ(i, j, k, grid, s, bias, f, idx, loc, args...)
@inline inner_biased_interpolate_zᵃᵃᶠ(i, j, k, grid, s::UB{$b}, bias, f::Function, idx, loc, ::AS, args...) = inner_biased_interpolate_zᵃᵃᶠ(i, j, k, grid, s, bias, f, idx, loc, args...)
@inline inner_biased_interpolate_xᶠᵃᵃ(i, j, k, grid, s::UBX{$b}, bias, f::Function, idx, loc, ::AS, args...) = inner_biased_interpolate_xᶠᵃᵃ(i, j, k, grid, s, bias, f, idx, loc, args...)
@inline inner_biased_interpolate_yᵃᶠᵃ(i, j, k, grid, s::UBY{$b}, bias, f::Function, idx, loc, ::AS, args...) = inner_biased_interpolate_yᵃᶠᵃ(i, j, k, grid, s, bias, f, idx, loc, args...)
@inline inner_biased_interpolate_zᵃᵃᶠ(i, j, k, grid, s::UBZ{$b}, bias, f::Function, idx, loc, ::AS, args...) = inner_biased_interpolate_zᵃᵃᶠ(i, j, k, grid, s, bias, f, idx, loc, args...)
end
end