|
| 1 | +""" |
| 2 | +Tests for the 75% disable rule from the NEAT paper. |
| 3 | +
|
| 4 | +From Stanley & Miikkulainen (2002), p. 111: |
| 5 | +"There was a 75% chance that an inherited gene was disabled if it was disabled in either parent." |
| 6 | +
|
| 7 | +Implementation Note: |
| 8 | +The neat-python implementation applies the 75% rule AFTER random attribute inheritance. |
| 9 | +For genes with one parent disabled and one enabled: |
| 10 | +- The 'enabled' attribute is first randomly inherited (50/50) |
| 11 | +- Then, if EITHER parent was disabled, there's a 75% chance to disable |
| 12 | +- Effective rate: 50% (inherited disabled) + 50% * 75% (inherited enabled then disabled) = 87.5% |
| 13 | +
|
| 14 | +This implementation validates that the 75% rule is correctly applied as an additional |
| 15 | +mechanism on top of standard attribute inheritance. |
| 16 | +""" |
| 17 | +import os |
| 18 | +import unittest |
| 19 | + |
| 20 | +import neat |
| 21 | +from neat.genes import DefaultConnectionGene |
| 22 | + |
| 23 | + |
| 24 | +class Test75PercentDisableRule(unittest.TestCase): |
| 25 | + """Tests for the 75% disable rule during crossover.""" |
| 26 | + |
| 27 | + def setUp(self): |
| 28 | + """Set up test configuration.""" |
| 29 | + local_dir = os.path.dirname(__file__) |
| 30 | + config_path = os.path.join(local_dir, 'test_configuration') |
| 31 | + self.config = neat.Config(neat.DefaultGenome, neat.DefaultReproduction, |
| 32 | + neat.DefaultSpeciesSet, neat.DefaultStagnation, |
| 33 | + config_path) |
| 34 | + |
| 35 | + def test_disable_rule_one_parent_disabled(self): |
| 36 | + """Test effective disable rate when one parent is disabled (~87.5%).""" |
| 37 | + gene1 = DefaultConnectionGene((0, 1), innovation=1) |
| 38 | + gene1.weight = 1.0 |
| 39 | + gene1.enabled = False # Disabled |
| 40 | + |
| 41 | + gene2 = DefaultConnectionGene((0, 1), innovation=1) |
| 42 | + gene2.weight = 1.0 |
| 43 | + gene2.enabled = True # Enabled |
| 44 | + |
| 45 | + trials = 2000 |
| 46 | + disabled_count = sum(1 for _ in range(trials) |
| 47 | + if not gene1.crossover(gene2).enabled) |
| 48 | + |
| 49 | + disable_rate = disabled_count / trials |
| 50 | + |
| 51 | + # Effective rate should be ~87.5% (50% + 37.5%) |
| 52 | + self.assertGreater(disable_rate, 0.84, |
| 53 | + f"Expected ~87.5% effective disable rate, got {disable_rate:.2%}") |
| 54 | + self.assertLess(disable_rate, 0.91, |
| 55 | + f"Expected ~87.5% effective disable rate, got {disable_rate:.2%}") |
| 56 | + |
| 57 | + def test_disable_rule_both_parents_disabled(self): |
| 58 | + """Test that offspring is always disabled when both parents are disabled.""" |
| 59 | + gene1 = DefaultConnectionGene((0, 1), innovation=1) |
| 60 | + gene1.weight = 1.0 |
| 61 | + gene1.enabled = False |
| 62 | + |
| 63 | + gene2 = DefaultConnectionGene((0, 1), innovation=1) |
| 64 | + gene2.weight = 2.0 |
| 65 | + gene2.enabled = False |
| 66 | + |
| 67 | + trials = 1000 |
| 68 | + disabled_count = sum(1 for _ in range(trials) |
| 69 | + if not gene1.crossover(gene2).enabled) |
| 70 | + |
| 71 | + disable_rate = disabled_count / trials |
| 72 | + |
| 73 | + # Both disabled: 100% inherit disabled (since both parents are disabled) |
| 74 | + # The 75% rule doesn't change anything since the gene is already disabled |
| 75 | + self.assertEqual(disabled_count, trials, |
| 76 | + f"Expected 100% disable rate with both parents disabled, got {disable_rate:.2%}") |
| 77 | + |
| 78 | + def test_disable_rule_both_parents_enabled(self): |
| 79 | + """Test that offspring is always enabled when both parents are enabled.""" |
| 80 | + gene1 = DefaultConnectionGene((0, 1), innovation=1) |
| 81 | + gene1.weight = 1.0 |
| 82 | + gene1.enabled = True |
| 83 | + |
| 84 | + gene2 = DefaultConnectionGene((0, 1), innovation=1) |
| 85 | + gene2.weight = 2.0 |
| 86 | + gene2.enabled = True |
| 87 | + |
| 88 | + trials = 1000 |
| 89 | + disabled_count = sum(1 for _ in range(trials) |
| 90 | + if not gene1.crossover(gene2).enabled) |
| 91 | + |
| 92 | + # Should be 0% disabled (all enabled) since neither parent is disabled |
| 93 | + self.assertEqual(disabled_count, 0, |
| 94 | + f"Expected 0% disable rate with both parents enabled, got {disabled_count/trials:.2%}") |
| 95 | + |
| 96 | + def test_disable_rule_is_applied_correctly(self): |
| 97 | + """Test that the 75% probability is correctly applied in the implementation.""" |
| 98 | + # The key insight: enabled is first inherited randomly, |
| 99 | + # THEN 75% rule is applied if either parent was disabled |
| 100 | + |
| 101 | + gene1 = DefaultConnectionGene((0, 1), innovation=1) |
| 102 | + gene1.weight = 1.0 |
| 103 | + gene1.enabled = False |
| 104 | + |
| 105 | + gene2 = DefaultConnectionGene((0, 1), innovation=1) |
| 106 | + gene2.weight = 1.0 |
| 107 | + gene2.enabled = True |
| 108 | + |
| 109 | + trials = 5000 |
| 110 | + disabled_count = sum(1 for _ in range(trials) |
| 111 | + if not gene1.crossover(gene2).enabled) |
| 112 | + |
| 113 | + disable_rate = disabled_count / trials |
| 114 | + |
| 115 | + # Should NOT be exactly 75% |
| 116 | + self.assertNotAlmostEqual(disable_rate, 0.75, delta=0.03, |
| 117 | + msg="Rate should not be exactly 75% due to layered inheritance") |
| 118 | + |
| 119 | + # Should be close to 87.5% |
| 120 | + self.assertAlmostEqual(disable_rate, 0.875, delta=0.03, |
| 121 | + msg=f"Expected ~87.5% from layered inheritance, got {disable_rate:.3f}") |
| 122 | + |
| 123 | + def test_disable_rule_preserves_other_attributes(self): |
| 124 | + """Test that the disable rule doesn't affect other attribute inheritance.""" |
| 125 | + gene1 = DefaultConnectionGene((0, 1), innovation=1) |
| 126 | + gene1.weight = 1.0 |
| 127 | + gene1.enabled = False |
| 128 | + |
| 129 | + gene2 = DefaultConnectionGene((0, 1), innovation=1) |
| 130 | + gene2.weight = 2.0 |
| 131 | + gene2.enabled = True |
| 132 | + |
| 133 | + for _ in range(100): |
| 134 | + offspring = gene1.crossover(gene2) |
| 135 | + |
| 136 | + # Weight should be from one of the parents |
| 137 | + self.assertIn(offspring.weight, [1.0, 2.0], |
| 138 | + "Offspring weight should be from one of the parents") |
| 139 | + |
| 140 | + # Innovation number should be preserved |
| 141 | + self.assertEqual(offspring.innovation, 1, |
| 142 | + "Innovation number should be preserved") |
| 143 | + |
| 144 | + def test_disable_rule_symmetry(self): |
| 145 | + """Test that disable rule works the same regardless of parent order.""" |
| 146 | + gene1_disabled = DefaultConnectionGene((0, 1), innovation=1) |
| 147 | + gene1_disabled.weight = 1.0 |
| 148 | + gene1_disabled.enabled = False |
| 149 | + |
| 150 | + gene2_enabled = DefaultConnectionGene((0, 1), innovation=1) |
| 151 | + gene2_enabled.weight = 1.0 |
| 152 | + gene2_enabled.enabled = True |
| 153 | + |
| 154 | + trials = 2000 |
| 155 | + |
| 156 | + # Crossover both ways |
| 157 | + disabled_count_1 = sum(1 for _ in range(trials) |
| 158 | + if not gene1_disabled.crossover(gene2_enabled).enabled) |
| 159 | + disabled_count_2 = sum(1 for _ in range(trials) |
| 160 | + if not gene2_enabled.crossover(gene1_disabled).enabled) |
| 161 | + |
| 162 | + rate1 = disabled_count_1 / trials |
| 163 | + rate2 = disabled_count_2 / trials |
| 164 | + |
| 165 | + # Both should be approximately the same (~87.5%) |
| 166 | + self.assertAlmostEqual(rate1, rate2, delta=0.05, |
| 167 | + msg=f"Rates should be similar: {rate1:.2%} vs {rate2:.2%}") |
| 168 | + |
| 169 | + |
| 170 | +class TestDisableRuleImplementation(unittest.TestCase): |
| 171 | + """Tests that verify the implementation details of the disable rule.""" |
| 172 | + |
| 173 | + def test_rule_applied_after_attribute_inheritance(self): |
| 174 | + """Verify that the 75% rule is applied AFTER random attribute inheritance.""" |
| 175 | + # This is the key implementation detail |
| 176 | + gene1 = DefaultConnectionGene((0, 1), innovation=1) |
| 177 | + gene1.weight = 1.0 |
| 178 | + gene1.enabled = False |
| 179 | + |
| 180 | + gene2 = DefaultConnectionGene((0, 1), innovation=1) |
| 181 | + gene2.weight = 2.0 |
| 182 | + gene2.enabled = True |
| 183 | + |
| 184 | + trials = 10000 |
| 185 | + disabled_count = sum(1 for _ in range(trials) |
| 186 | + if not gene1.crossover(gene2).enabled) |
| 187 | + |
| 188 | + rate = disabled_count / trials |
| 189 | + |
| 190 | + # If rule was applied INSTEAD of inheritance, we'd get exactly 75% |
| 191 | + # Since it's applied AFTER, we get 87.5% |
| 192 | + self.assertGreater(rate, 0.85, |
| 193 | + "Rate should be higher than 75% due to layered application") |
| 194 | + self.assertLess(rate, 0.90, |
| 195 | + "Rate should be close to 87.5%") |
| 196 | + |
| 197 | + def test_enabled_offspring_probability(self): |
| 198 | + """Test that ~12.5% of offspring remain enabled (complement of 87.5%).""" |
| 199 | + gene1 = DefaultConnectionGene((0, 1), innovation=1) |
| 200 | + gene1.weight = 1.0 |
| 201 | + gene1.enabled = False |
| 202 | + |
| 203 | + gene2 = DefaultConnectionGene((0, 1), innovation=1) |
| 204 | + gene2.weight = 1.0 |
| 205 | + gene2.enabled = True |
| 206 | + |
| 207 | + trials = 2000 |
| 208 | + enabled_count = sum(1 for _ in range(trials) |
| 209 | + if gene1.crossover(gene2).enabled) |
| 210 | + |
| 211 | + enabled_rate = enabled_count / trials |
| 212 | + |
| 213 | + # Should have ~12.5% enabled (50% inherit enabled * 25% stay enabled) |
| 214 | + self.assertGreater(enabled_rate, 0.09, |
| 215 | + f"Expected ~12.5% enabled, got {enabled_rate:.2%}") |
| 216 | + self.assertLess(enabled_rate, 0.16, |
| 217 | + f"Expected ~12.5% enabled, got {enabled_rate:.2%}") |
| 218 | + |
| 219 | + def test_no_false_enabling(self): |
| 220 | + """Test that the rule never RE-enables an already disabled gene.""" |
| 221 | + gene1 = DefaultConnectionGene((0, 1), innovation=1) |
| 222 | + gene1.weight = 1.0 |
| 223 | + gene1.enabled = True |
| 224 | + |
| 225 | + gene2 = DefaultConnectionGene((0, 1), innovation=1) |
| 226 | + gene2.weight = 1.0 |
| 227 | + gene2.enabled = True |
| 228 | + |
| 229 | + # When both enabled, should never get disabled |
| 230 | + for _ in range(1000): |
| 231 | + offspring = gene1.crossover(gene2) |
| 232 | + self.assertTrue(offspring.enabled, |
| 233 | + "Should never disable when both parents enabled") |
| 234 | + |
| 235 | + def test_mathematical_model_accuracy(self): |
| 236 | + """Test that observed rates match the mathematical model.""" |
| 237 | + gene1 = DefaultConnectionGene((0, 1), innovation=1) |
| 238 | + gene1.weight = 1.0 |
| 239 | + gene1.enabled = False |
| 240 | + |
| 241 | + gene2 = DefaultConnectionGene((0, 1), innovation=1) |
| 242 | + gene2.weight = 1.0 |
| 243 | + gene2.enabled = True |
| 244 | + |
| 245 | + trials = 10000 |
| 246 | + disabled_count = sum(1 for _ in range(trials) |
| 247 | + if not gene1.crossover(gene2).enabled) |
| 248 | + |
| 249 | + observed_rate = disabled_count / trials |
| 250 | + |
| 251 | + # Mathematical model: |
| 252 | + # P(disabled) = P(inherit disabled) + P(inherit enabled AND then disabled) |
| 253 | + # = 0.5 + (0.5 * 0.75) |
| 254 | + # = 0.5 + 0.375 |
| 255 | + # = 0.875 |
| 256 | + expected_rate = 0.875 |
| 257 | + |
| 258 | + # Should be within 1% of expected |
| 259 | + self.assertAlmostEqual(observed_rate, expected_rate, delta=0.01, |
| 260 | + msg=f"Observed {observed_rate:.4f} should match model {expected_rate}") |
| 261 | + |
| 262 | + |
| 263 | +if __name__ == '__main__': |
| 264 | + unittest.main() |
0 commit comments