-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathutils.py
532 lines (379 loc) · 18.7 KB
/
utils.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
#load libraries
import scanpy as sc
import pandas as pd
from sklearn import metrics
import numpy as np
import pandas as pd
import re
from progressbar import ProgressBar,Bar,Percentage
from scanpy import AnnData
import itertools
import cobra as cb
import matplotlib.pyplot as plt
import scipy
cb.Configuration.solver="glpk"
cb.Configuration().tolerance=1E-07
"""
Class to compute the RAS values
"""
class RAS_computation:
def __init__(self,adata,model):
self._logic_operators = ['and', 'or', '(', ')']
self.val_nan = np.nan
# Build the dictionary for the GPRs
df_reactions = pd.DataFrame(index=[reaction.id for reaction in model.reactions])
gene_rules=[reaction.gene_reaction_rule for reaction in model.reactions]
gene_rules=[el.replace("OR","or").replace("AND","and").replace("(","( ").replace(")"," )") for el in gene_rules]
df_reactions['rule'] = gene_rules
df_reactions = df_reactions.reset_index()
df_reactions = df_reactions.groupby('rule').agg(lambda x: sorted(list(x)))
self.dict_rule_reactions = df_reactions.to_dict()['index']
# build useful structures for RAS computation
self.model = model
self.count_adata = adata.copy()
self.genes = self.count_adata.var.index.intersection([gene.id for gene in model.genes])
self.cell_ids = list(self.count_adata.obs.index.values)
self.count_df_filtered = self.count_adata.to_df().T.loc[self.genes]
def compute(self):
self.or_function = np.nansum
self.and_function = np.nanmin
regexp=re.compile(r"\([a-zA-Z0-9-.\s]+\)") # regular expression inside a parenthesis
ras_df = pd.DataFrame(index=range(len(self.dict_rule_reactions)), columns=self.cell_ids)
ras_df[:][:] = self.val_nan
pbar = ProgressBar(widgets=[Percentage(), Bar()], maxval=len(self.dict_rule_reactions)).start()
i = 0
# for loop on reactions
ind = 0
for rule, reaction_ids in self.dict_rule_reactions.items():
if len(rule) != 0:
# there is one gene at least in the formula
rule_split = rule.split()
rule_split_elements = list(filter(lambda x: x not in self._logic_operators, rule_split)) # remove of all logical operators
rule_split_elements = list(np.unique(rule_split_elements)) # genes in formula
# which genes are in the count matrix?
genes_in_count_matrix = list(set([el for el in rule_split_elements if el in self.genes]))
genes_notin_count_matrix = list(set([el for el in rule_split_elements if el not in self.genes]))
if len(genes_in_count_matrix) > 0: #there is at least one gene in the count matrix
if len(rule_split) == 1:
#one gene --> one reaction
ras_df.iloc[ind] = self.count_df_filtered.loc[genes_in_count_matrix]
else:
# more genes in the formula
lista = re.findall(regexp, rule)
if len(lista) == 0:
#or/and sequence
matrix = self.count_df_filtered.loc[genes_in_count_matrix].values
if len(genes_notin_count_matrix) > 0:
matrix = np.vstack([matrix, [self.val_nan for el in self.cell_ids]])
if 'or' in rule_split:
ras_df.iloc[ind] = self.or_function(matrix, axis=0)
else:
ras_df.iloc[ind] = self.and_function(matrix, axis=0)
else:
# ho almeno una tonda
data = self.count_df_filtered.loc[genes_in_count_matrix] # dataframe of genes in the GPRs
genes = data.index
j = 0
for cellid in self.cell_ids: #for loop on the cells
lista_cell = lista.copy()
rule_cell = rule
while len(lista_cell) > 0:
#
for el in lista_cell:
#print(el[1:-1])
value = self._evaluate_expression(el[1:-1].split(), data[cellid], genes)
rule_cell = rule_cell.replace(el, str(value))
lista_cell = re.findall(regexp, rule_cell)
ras_df.iloc[ind, j] = self._evaluate_expression(rule_cell.split(), data[cellid], genes)
j=j+1
ind = ind+1
#update percentage
pbar.update(i+1)
i = i+1
pbar.finish()
ras_df=ras_df.astype("float")
ras_df['REACTIONS'] = [reaction_ids for rule,reaction_ids in self.dict_rule_reactions.items()]
reactions_common = pd.DataFrame()
reactions_common["REACTIONS"] = ras_df['REACTIONS']
reactions_common["proof2"] = ras_df['REACTIONS']
reactions_common = reactions_common.explode('REACTIONS')
reactions_common = reactions_common.set_index("REACTIONS")
ras_df = ras_df.explode("REACTIONS")
ras_df = ras_df.set_index("REACTIONS")
# Drop na rules
ras_df=ras_df.dropna()
#create AnnData structure for RAS
ras_adata = AnnData(ras_df.T)
#add metadata
for el in self.count_adata.obs.columns:
ras_adata.obs["countmatrix_"+el]=self.count_adata.obs[el]
return ras_adata
def _check_number(self,value):
try:
float(value)
return True
except ValueError:
return False
def _evaluate_expression(self, rule_split, values_cellid, genes):
#ci sono per forza solo or
rule_split2 = list(filter(lambda x: x != "or" and x!="and", rule_split))
values = list()
i=0
for el in rule_split2:
if self._check_number(el):
values.append(float(el))
elif el in genes:
values.append(values_cellid[el])
else:
values.append(self.val_nan)
i=i+1
if i==len(rule_split2):
return self.val_nan
if "or" in rule_split:
#or sequence
return self.or_function(values)
else:
#and sequence
return self.and_function(values)
""" Funcion to perform single cell FBA"""
def scFBA(model,ras_adata,dfFVA,eps=0,verbose=False):
each_count=20
reactions=[reaction.id for reaction in model.reactions]
#normalize ras matrix
ras_matrix=ras_adata.to_df().T
ras_matrix=ras_matrix.T.div(ras_matrix.T.max(axis=0)).T
ras_matrix.fillna(0,inplace=True)
indexes=ras_matrix.index
cells=list(ras_matrix.columns)
i=0
valori=[]
dfOpt=pd.DataFrame(index=reactions,columns=cells)
for cell in cells:
model2=model.copy()
for reaction in reactions:
if reaction in indexes:
lower_bound=dfFVA.loc[reaction,"minimum"]
upper_bound=dfFVA.loc[reaction,"maximum"]
if dfFVA.loc[reaction,"maxABS"]>0:
valMax=eps+(dfFVA.loc[reaction,"maximum"]-eps)*ras_matrix.loc[reaction,cell]
valMin=-eps+(dfFVA.loc[reaction,"minimum"]+eps)*ras_matrix.loc[reaction,cell]
if upper_bound>0 and lower_bound==0:
model2.reactions.get_by_id(reaction).upper_bound=valMax #
if upper_bound==0 and lower_bound<0:
model2.reactions.get_by_id(reaction).lower_bound=valMin
if upper_bound!=0 and lower_bound!=0:
model2.reactions.get_by_id(reaction).lower_bound=valMin
model2.reactions.get_by_id(reaction).upper_bound=valMax
model2.solver.configuration.timeout=5
opt=model2.optimize()
dfOpt[cell]=opt.fluxes
if verbose:
print(opt.objective_value)
if not verbose and i % each_count==0:
print(i,cell)
i=i+1
flux_adata=AnnData(dfOpt.T.round(10))
flux_adata.obs=ras_adata.obs
return flux_adata
def find_essential(model):
list_essential_reactions=cb.flux_analysis.find_essential_reactions(model)
list_essential_reactions=[reaction.id for reaction in list_essential_reactions]
return list_essential_reactions
def plot_distributions(adatasets):
i=0
for adata in adatasets:
if i==1:
groupby="countmatrix_Factor Value[disease]"
else:
groupby="countmatrix_Type"
len_reactions=adata.to_df().shape[1]
adata.obs["perc_zeros"]=(adata.to_df()==0).sum(1)/len_reactions*100
axes=sc.pl.violin(adata,keys=["perc_zeros"],groupby=groupby,stripplot=False,show=False,scale="area")
axes.set_ylim([0,100])
axes.grid()
axes.set_xlabel("")
axes.set_ylabel("% of zero RAS values")
i=i+1
def plot_correlations(adatasets):
i=0
for adata in adatasets:
df=adata.to_df()
dfCorr=df.corr(method='spearman')
dfCorr=dfCorr.where(np.triu(np.ones(dfCorr.shape),k=1).astype(np.bool))
plt.figure()
plt.hist(dfCorr.values.ravel()[dfCorr.values.ravel()>-100000000])
plt.xlim([-1,1])
plt.grid()
plt.xlabel("")
plt.ylabel("N° of reaction pairs")
def plot_two_reaction_correlation(adatasets,reactions):
i=0
for adata in adatasets:
if i==1:
groupby="countmatrix_Factor Value[disease]"
else:
groupby="countmatrix_Type"
df=adata.to_df()
df["type"]=adata.obs[groupby].values
names=list(set(adata.obs[groupby].values))
df1=df.loc[:,reactions[0]]
df2=df.loc[:,reactions[1]]
names1=df["type"][df["type"]==names[0]].index
names2=df["type"][df["type"]==names[1]].index
r1, p = scipy.stats.pearsonr(df1.values,df2.values)
plt.figure()
plt.scatter(df1.loc[names1].values,df2.loc[names1].values)
plt.scatter(df1.loc[names2].values,df2.loc[names2].values)
plt.xlabel(reactions[0])
plt.ylabel(reactions[1])
plt.grid()
plt.title("".join(['r: ',str(np.round(r1,2)),", ",'p: ',str(np.round(p,4)) ]))
i=i+1
def plot_two_reaction_correlation_ba(adatasets_before,adatasets_after,reactions,fontsize=20,figsize=(20,30)):
plt.rcParams.update({'font.size': fontsize})
fig,axes=plt.subplots(3,2,figsize= figsize)
name_legend1=["Wildtype","Normal","PBMC"]
name_legend2=["Metformin","IFP","Tumor"]
i=0
for adata in adatasets_before:
if i==1:
groupby="countmatrix_Factor Value[disease]"
else:
groupby="countmatrix_Type"
df=adata.to_df()
df["type"]=adata.obs[groupby].values
names=list(set(adata.obs[groupby].values))
df1=df.loc[:,reactions[0]]
df2=df.loc[:,reactions[1]]
names1=df["type"][df["type"]==names[0]].index
names2=df["type"][df["type"]==names[1]].index
r1, p = scipy.stats.pearsonr(df1.values,df2.values)
if i==1:
if names[0]=="idiopathic pulmonary fibrosis":
names[0]="IFP"
if names[1]=="idiopathic pulmonary fibrosis":
names[1]="IFP"
axes[i,0].scatter(df1.loc[names1].values,df2.loc[names1].values,label=names[0])
axes[i,0].scatter(df1.loc[names2].values,df2.loc[names2].values,label=names[1])
axes[i,0].set_xlabel(reactions[0])
axes[i,0].set_ylabel(reactions[1])
axes[i,0].grid()
axes[i,0].set_title("".join(['r: ',str(np.round(r1,2)) ]))
axes[i,0].legend(loc ="upper right")
i=i+1
i=0
for adata in adatasets_after:
if i==1:
groupby="countmatrix_Factor Value[disease]"
else:
groupby="countmatrix_Type"
df=adata.to_df()
df["type"]=adata.obs[groupby].values
names=list(set(adata.obs[groupby].values))
df1=df.loc[:,reactions[0]]
df2=df.loc[:,reactions[1]]
names1=df["type"][df["type"]==names[0]].index
names2=df["type"][df["type"]==names[1]].index
r1, p = scipy.stats.pearsonr(df1.values,df2.values)
if i==1:
if names[0]=="idiopathic pulmonary fibrosis":
names[0]="IFP"
if names[1]=="idiopathic pulmonary fibrosis":
names[1]="IFP"
axes[i,1].scatter(df1.loc[names1].values,df2.loc[names1].values,label=names[0])
axes[i,1].scatter(df1.loc[names2].values,df2.loc[names2].values,label=names[1])
axes[i,1].set_xlabel(reactions[0])
axes[i,1].set_ylabel(reactions[1])
axes[i,1].grid()
axes[i,1].set_title("".join(['r: ',str(np.round(r1,2)) ]))
axes[i,1].legend(loc ="upper right")
i=i+1
axes[0,0].annotate("Raw RAS", xy=(0.35, 1.2), xycoords="axes fraction",fontsize=35)
axes[0,1].annotate("RAS after MAGIC", xy=(0.3, 1.2), xycoords="axes fraction",fontsize=35)
axes[0,0].annotate("GSE110949", xy=(-0.3, 1.05), xycoords="axes fraction",fontsize=30)
axes[1,0].annotate("E-GEOD-86618", xy=(-0.3, 1.05), xycoords="axes fraction",fontsize=30)
axes[2,0].annotate("GSE118056", xy=(-0.3, 1.05), xycoords="axes fraction",fontsize=30)
def table_sparsity(adatasets_countmatrix,adatasets_rasmatrix,names_datasets):
dfTable=pd.DataFrame(index=names_datasets,
columns=["count_matrix","metabolic_countmatrix",
"ras_matrix","essential ras_matrix"])
df_genes=pd.read_csv("data/genes_ENGRO2.csv",index_col=0)
dfFVA=pd.read_csv("data/FVA.csv",index_col=0)["essential"]
essential=dfFVA[dfFVA==True].index
for count_adata,ras_adata,name in zip(adatasets_countmatrix,
adatasets_rasmatrix,
names_datasets):
cells,len_reactions=ras_adata.to_df().shape
cells,genes=count_adata.to_df().shape
#count matrix
dfTable.loc[name,"count_matrix"]=str(np.round((count_adata.to_df()==0).sum(0).sum(0)/(genes*cells)*100,2))+"%"
#metabolic count matrix
if name=="datasetE-GEOD-86618":
met_genes=list(df_genes["metabolic_genes_ensg"].values)
else:
met_genes=list(df_genes["metabolic_genes_genesymbol"].values)
met_genes=[el for el in met_genes if el in count_adata.var.index]
dfTable.loc[name,"metabolic_countmatrix"]=str(np.round((count_adata[:,met_genes].to_df()==0).sum(0).sum(0)/(len(met_genes)*cells)*100,2))+"%"
#ras matrix
dfTable.loc[name,"ras_matrix"]=str(np.round((ras_adata.to_df()==0).sum(0).sum(0)/(len_reactions*cells)*100,2))+"%"
#essential ras values
reactions=list(ras_adata.var.index)
essential_specific=[el for el in essential if el in reactions]
val=(ras_adata[:,essential_specific].to_df()==0).sum(0).sum(0)
dfTable.loc[name,"essential ras_matrix"]=str(np.round(val/(len(essential_specific)*cells)*100,2))+"%"
return dfTable
def table_sparsity_denoised(adatasets_magic,adatasets_enhance,adatasets_saver,names_datasets):
dfTable=pd.DataFrame(index=names_datasets,
columns=["magic","enhance","saver"])
dfFVA=pd.read_csv("data/FVA.csv",index_col=0)["essential"]
essential=dfFVA[dfFVA==True].index
for ras_adata_magic,ras_adata_enhance,ras_adata_saver,name in zip(adatasets_magic,
adatasets_enhance,
adatasets_saver,
names_datasets):
cells,len_reactions=ras_adata_magic.to_df().shape
reactions=list(ras_adata_magic.var.index)
essential_specific=[el for el in essential if el in reactions]
#ras matrix magic
val=np.round((ras_adata_magic.to_df()==0).sum().sum()/(len_reactions*cells)*100,2)
val2=np.round((ras_adata_magic[:,essential_specific].to_df()==0).sum().sum()/(len(essential_specific)*cells)*100,2)
dfTable.loc[name,"magic"]=str(val)+"%("+str(val2)+"%)"
#ras matrix enhance
val=np.round((ras_adata_enhance.to_df()==0).sum().sum()/(len_reactions*cells)*100,2)
val2=np.round((ras_adata_enhance[:,essential_specific].to_df()==0).sum().sum()/(len(essential_specific)*cells)*100,2)
dfTable.loc[name,"enhance"]=str(val)+"%("+str(val2)+"%)"
#ras matrix enhance
val=np.round((ras_adata_saver.to_df()==0).sum().sum()/(len_reactions*cells)*100,2)
val2=np.round((ras_adata_saver[:,essential_specific].to_df()==0).sum().sum()/(len(essential_specific)*cells)*100,2)
dfTable.loc[name,"saver"]=str(val)+"%("+str(val2)+"%)"
return dfTable
def find_bh(
ras_adata,
n_pcs=[10],
n_neighbors=[5],
):
ras_adata_clustering=ras_adata.copy()
#%%pca analysis
sc.tl.pca(ras_adata_clustering, svd_solver='arpack',n_comps=max(n_pcs))
cluster_values_sil=list()
num_cluster=list()
pcs_values=list()
neigh_values=list()
for npc in n_pcs:
for neigh in n_neighbors:
adata=ras_adata_clustering.copy()
sc.pp.neighbors(adata, n_neighbors=neigh, n_pcs=npc)
sc.tl.leiden(adata,key_added = "leiden")
pcs_values.append(npc)
neigh_values.append(neigh)
if len(set(adata.obs["leiden"].values))>1:
cluster_values_sil.append(metrics.silhouette_score(adata.obsm['X_pca'][:,0:npc],adata.obs["leiden"],metric='euclidean'))
else:
cluster_values_sil.append(None)
num_cluster.append(len(set(adata.obs["leiden"].values)))
df=pd.DataFrame()
df["pcs_values"]=pcs_values
df["neigh_values"]=neigh_values
df["num_cluster"]=num_cluster
df["cluster_values_sil"]=cluster_values_sil
return df