-
Notifications
You must be signed in to change notification settings - Fork 0
/
forcebalance.nb
2394 lines (2351 loc) · 107 KB
/
forcebalance.nb
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
(* Content-type: application/vnd.wolfram.mathematica *)
(*** Wolfram Notebook File ***)
(* http://www.wolfram.com/nb *)
(* CreatedBy='Mathematica 12.1' *)
(*CacheID: 234*)
(* Internal cache information:
NotebookFileLineBreakTest
NotebookFileLineBreakTest
NotebookDataPosition[ 158, 7]
NotebookDataLength[ 109221, 2386]
NotebookOptionsPosition[ 105854, 2325]
NotebookOutlinePosition[ 106280, 2342]
CellTagsIndexPosition[ 106237, 2339]
WindowFrame->Normal*)
(* Beginning of Notebook Content *)
Notebook[{
Cell[CellGroupData[{
Cell["Preliminaries", "Subsection",
CellChangeTimes->{{3.84928918211922*^9, 3.849289185918886*^9}, {
3.849289448973153*^9, 3.8492894552045183`*^9}, {3.84934664940705*^9,
3.849346651431707*^9}},ExpressionUUID->"44ca3b6a-8083-4d78-b9c0-\
c2e82cd0f465"],
Cell["Define useful constants", "Text",
CellChangeTimes->{{3.849347041105392*^9,
3.84934705642922*^9}},ExpressionUUID->"411f0f57-0947-4494-ad8d-\
c2e2305d4813"],
Cell[BoxData[{
RowBox[{
RowBox[{"MEarth", "=",
RowBox[{"5.9722", "*",
RowBox[{"10", "^", "24"}]}]}], ";"}], "\[IndentingNewLine]",
RowBox[{
RowBox[{"REarth", "=", "6378100"}], ";"}], "\[IndentingNewLine]",
RowBox[{
RowBox[{"MSun", "=",
RowBox[{"1.98847", "*",
RowBox[{"10", "^", "30"}]}]}], ";"}], "\[IndentingNewLine]",
RowBox[{
RowBox[{"MMoon", "=",
RowBox[{"7.342", "*",
RowBox[{"10", "^", "22"}]}]}], ";"}], "\[IndentingNewLine]",
RowBox[{
RowBox[{"RMoon", "=", "1737400"}], ";"}], "\[IndentingNewLine]",
RowBox[{
RowBox[{"RSun", "=",
RowBox[{"6.957", "*",
RowBox[{"10", "^", "8"}]}]}], ";"}], "\[IndentingNewLine]",
RowBox[{
RowBox[{"AU", "=",
RowBox[{"1.49598", "*",
RowBox[{"10", "^", "11"}]}]}], ";"}]}], "Input",
CellChangeTimes->{{3.8492896969772673`*^9, 3.849289726624935*^9}, {
3.849346589663569*^9, 3.8493465939443417`*^9}, {3.8493466677563066`*^9,
3.8493466724131403`*^9}, {3.849347259656371*^9, 3.849347263712929*^9}},
CellLabel->"In[59]:=",ExpressionUUID->"b12aa0d2-c30d-4db5-b8d5-00e72a06727f"],
Cell["Simple force balance solver", "Text",
CellChangeTimes->{{3.849347060242895*^9,
3.849347065856737*^9}},ExpressionUUID->"1a05cbb5-8095-4546-9f5c-\
ff17da4a9206"],
Cell[BoxData[
RowBox[{
RowBox[{"minfn", "[",
RowBox[{
"Mstar_", ",", "Mp_", ",", "Ms_", ",", "Rs_", ",", "ap_", ",", "f_"}],
"]"}], ":=",
SuperscriptBox[
RowBox[{"(",
RowBox[{
FractionBox["Mp",
SuperscriptBox[
RowBox[{"(",
RowBox[{
RowBox[{
RowBox[{"(",
RowBox[{"f", " ",
SuperscriptBox[
RowBox[{"(",
FractionBox["Mp",
RowBox[{"3", "Mstar"}]], ")"}],
RowBox[{"1", "/", "3"}]]}], ")"}], " ", "ap"}], "+", "Rs"}],
")"}], "2"]], "+",
FractionBox["Ms",
SuperscriptBox["Rs", "2"]], "-",
FractionBox["Mstar",
SuperscriptBox[
RowBox[{"(",
RowBox[{"ap", "-",
RowBox[{
RowBox[{"(",
RowBox[{"f", " ",
SuperscriptBox[
RowBox[{"(",
FractionBox["Mp",
RowBox[{"3", "Mstar"}]], ")"}],
RowBox[{"1", "/", "3"}]]}], ")"}], " ", "ap",
RowBox[{"(",
FractionBox["Mp",
RowBox[{"Mp", "+", "Ms"}]], ")"}]}], "-", "Rs"}], ")"}], "2"]]}],
")"}], "2"]}]], "Input",
CellChangeTimes->{{3.849289546629057*^9, 3.8492896617414618`*^9}, {
3.8493466575201607`*^9, 3.849346657631997*^9}, {3.849347068639554*^9,
3.849347070953644*^9}},ExpressionUUID->"f1e8b320-5ae9-40f0-8245-\
3c954d89746b"],
Cell["\<\
Limiting f due to planetary tides (re-arranging expression of Kane 2017)\
\>", "Text",
CellChangeTimes->{{3.849347077501589*^9,
3.849347096974331*^9}},ExpressionUUID->"abda0419-cc69-485f-acd3-\
27cadc58ff61"],
Cell[BoxData[
RowBox[{
RowBox[{"fkane", "[",
RowBox[{"Mstar_", ",", "aplanet_", ",", "\[Rho]moon_", ",", "\[Zeta]_"}],
"]"}], ":=",
RowBox[{
FractionBox[
RowBox[{"\[Zeta]", " "}], "aplanet"],
SuperscriptBox[
RowBox[{"(",
FractionBox[
RowBox[{"9", " ", "Mstar"}],
RowBox[{"4", "\[Pi]", " ", "\[Rho]moon"}]], ")"}],
RowBox[{"1", "/", "3"}]]}]}]], "Input",ExpressionUUID->"d6ce2106-7546-\
455a-ba4a-acacdc1b2139"]
}, Open ]],
Cell[CellGroupData[{
Cell["Sun-mass", "Subsection",
CellChangeTimes->{{3.849303403744521*^9,
3.849303407178761*^9}},ExpressionUUID->"3f1485f3-e802-4216-a58a-\
337743e170bd"],
Cell[CellGroupData[{
Cell[BoxData[{
RowBox[{"abalance", "=",
RowBox[{"Last", "[",
RowBox[{"Last", "[",
RowBox[{"Last", "[",
RowBox[{"NMinimize", "[",
RowBox[{
RowBox[{"{",
RowBox[{
RowBox[{"minfn", "[",
RowBox[{"MSun", ",", "MEarth", ",", "MMoon", ",", "RMoon", ",",
RowBox[{"a", " ", "AU"}], ",", "1"}], "]"}], ",",
RowBox[{"a", ">", "0"}]}], "}"}], ",", "a"}], "]"}], "]"}], "]"}],
"]"}]}], "\[IndentingNewLine]",
RowBox[{
RowBox[{"agrid", "=",
RowBox[{"Table", "[",
RowBox[{"x", ",",
RowBox[{"{",
RowBox[{"x", ",",
RowBox[{"(",
RowBox[{"RSun", "/", "AU"}], ")"}], ",",
RowBox[{"2", "abalance"}], ",",
FractionBox[
RowBox[{"abalance", "-",
RowBox[{"(",
RowBox[{"RSun", "/", "AU"}], ")"}]}], "100"]}], "}"}]}], "]"}]}],
";"}], "\[IndentingNewLine]",
RowBox[{"Length", "[", "agrid", "]"}]}], "Input",
CellChangeTimes->{{3.8492898078459873`*^9, 3.849289816713532*^9}, {
3.849346569488209*^9, 3.849346608400576*^9}, {3.849346663441656*^9,
3.849346663581616*^9}, 3.849346755955923*^9, {3.8493471278465977`*^9,
3.849347152977717*^9}},
CellLabel->"In[49]:=",ExpressionUUID->"aeb4a399-78c9-4c27-8ceb-38cc44cc7d29"],
Cell[BoxData["0.060185061056759255`"], "Output",
CellChangeTimes->{
3.849289817411551*^9, 3.8492910513636513`*^9, 3.849304451958644*^9,
3.84933986373554*^9, {3.849346578655826*^9, 3.8493466086834087`*^9}, {
3.849346663943022*^9, 3.849346675685314*^9}, 3.849347101437958*^9, {
3.8493471315955887`*^9, 3.849347157458755*^9}},
CellLabel->"Out[49]=",ExpressionUUID->"81babd71-47a4-4af6-aade-36c9a711a9c8"],
Cell[BoxData["209"], "Output",
CellChangeTimes->{
3.849289817411551*^9, 3.8492910513636513`*^9, 3.849304451958644*^9,
3.84933986373554*^9, {3.849346578655826*^9, 3.8493466086834087`*^9}, {
3.849346663943022*^9, 3.849346675685314*^9}, 3.849347101437958*^9, {
3.8493471315955887`*^9, 3.8493471574601593`*^9}},
CellLabel->"Out[51]=",ExpressionUUID->"31c34d54-9a72-4772-90a1-d6780d3df834"]
}, Open ]],
Cell[BoxData[{
RowBox[{
RowBox[{"result", "=",
RowBox[{"Table", "[",
RowBox[{
RowBox[{"{",
RowBox[{
RowBox[{"agrid", "[",
RowBox[{"[", "i", "]"}], "]"}], ",",
RowBox[{"Last", "[",
RowBox[{"Last", "[",
RowBox[{"Last", "[",
RowBox[{"NMinimize", "[",
RowBox[{
RowBox[{"{",
RowBox[{
RowBox[{"minfn", "[",
RowBox[{"MSun", ",", "MEarth", ",", "MMoon", ",", "RMoon", ",",
RowBox[{
RowBox[{"agrid", "[",
RowBox[{"[", "i", "]"}], "]"}], "AU"}], ",", "f"}], "]"}],
",",
RowBox[{"f", ">", "0"}]}], "}"}], ",", "f", ",",
RowBox[{"Method", "\[Rule]", "\"\<NelderMead\>\""}]}], "]"}],
"]"}], "]"}], "]"}]}], "}"}], ",",
RowBox[{"{",
RowBox[{"i", ",", "1", ",",
RowBox[{"Length", "[", "agrid", "]"}]}], "}"}]}], "]"}]}],
";"}], "\[IndentingNewLine]",
RowBox[{
RowBox[{"result", "=",
RowBox[{"Join", "[",
RowBox[{
RowBox[{"{",
RowBox[{"{",
RowBox[{"0.000", ",", "0"}], "}"}], "}"}], ",", "result"}], "]"}]}],
";"}]}], "Input",
CellChangeTimes->{{3.84928966456054*^9, 3.849289674324195*^9}, {
3.849289730370865*^9, 3.8492898582932453`*^9}, {3.849289910076215*^9,
3.849289955310511*^9}, {3.849290026967594*^9, 3.849290049145904*^9}, {
3.849290165594742*^9, 3.849290178763672*^9}, {3.849290217824954*^9,
3.849290260373188*^9}, {3.849291047522018*^9, 3.849291047678217*^9}, {
3.849302178006688*^9, 3.849302204139423*^9}, {3.849302817284622*^9,
3.849302817586397*^9}, 3.849303044324929*^9, 3.84930445925373*^9, {
3.8493466837995768`*^9, 3.849346684023097*^9}},
CellLabel->"In[52]:=",ExpressionUUID->"8b24059f-10dd-4f48-adc4-01aa3bd4b6f7"],
Cell[BoxData[
RowBox[{
RowBox[{"interp", "=",
RowBox[{"Interpolation", "[",
RowBox[{"result", "[",
RowBox[{"[",
RowBox[{"All", ",",
RowBox[{"{",
RowBox[{"1", ",", "2"}], "}"}]}], "]"}], "]"}], "]"}]}],
";"}]], "Input",
CellChangeTimes->{{3.8493032181751833`*^9, 3.849303228738522*^9}},
CellLabel->"In[54]:=",ExpressionUUID->"a2b00d9f-c155-456c-a545-799838b61e64"],
Cell[BoxData[{
RowBox[{
RowBox[{"xticks", "=",
RowBox[{"{",
RowBox[{
RowBox[{"{",
RowBox[{"0", ",", "\"\<0\>\""}], "}"}], ",",
RowBox[{"{",
RowBox[{"0.01", ",", "\"\<0.01\>\""}], "}"}], ",",
RowBox[{"{",
RowBox[{"0.02", ",", "\"\<0.02\>\""}], "}"}], ",",
RowBox[{"{",
RowBox[{"0.03", ",", "\"\<0.03\>\""}], "}"}], ",",
RowBox[{"{",
RowBox[{"0.04", ",", "\"\<0.04\>\""}], "}"}], ",",
RowBox[{"{",
RowBox[{"0.05", ",", "\"\<0.05\>\""}], "}"}], ",",
RowBox[{"{",
RowBox[{"0.06", ",", "\"\<0.06\>\""}], "}"}], ",",
RowBox[{"{",
RowBox[{"0.07", ",", "\"\<0.07\>\""}], "}"}], ",",
RowBox[{"{",
RowBox[{"0.08", ",", "\"\<0.08\>\""}], "}"}], ",",
RowBox[{"{",
RowBox[{"0.09", ",", "\"\<0.09\>\""}], "}"}], ",",
RowBox[{"{",
RowBox[{"0.10", ",", "\"\<0.10\>\""}], "}"}]}], "}"}]}],
";"}], "\[IndentingNewLine]",
RowBox[{
RowBox[{"xticks2", "=",
RowBox[{"{",
RowBox[{
RowBox[{"{",
RowBox[{
SuperscriptBox[
RowBox[{"(",
FractionBox["1", "365.25"], ")"}],
RowBox[{"2", "/", "3"}]], ",", "\"\<1\>\""}], "}"}], ",",
RowBox[{"{",
RowBox[{
SuperscriptBox[
RowBox[{"(",
FractionBox["2", "365.25"], ")"}],
RowBox[{"2", "/", "3"}]], ",", "\"\<2\>\""}], "}"}], ",",
RowBox[{"{",
RowBox[{
SuperscriptBox[
RowBox[{"(",
FractionBox["3", "365.25"], ")"}],
RowBox[{"2", "/", "3"}]], ",", "\"\<3\>\""}], "}"}], ",",
RowBox[{"{",
RowBox[{
SuperscriptBox[
RowBox[{"(",
FractionBox["4", "365.25"], ")"}],
RowBox[{"2", "/", "3"}]], ",", "\"\<4\>\""}], "}"}], ",",
RowBox[{"{",
RowBox[{
SuperscriptBox[
RowBox[{"(",
FractionBox["5", "365.25"], ")"}],
RowBox[{"2", "/", "3"}]], ",", "\"\<5\>\""}], "}"}], ",",
RowBox[{"{",
RowBox[{
SuperscriptBox[
RowBox[{"(",
FractionBox["6", "365.25"], ")"}],
RowBox[{"2", "/", "3"}]], ",", "\"\<6\>\""}], "}"}], ",",
RowBox[{"{",
RowBox[{
SuperscriptBox[
RowBox[{"(",
FractionBox["7", "365.25"], ")"}],
RowBox[{"2", "/", "3"}]], ",", "\"\<7\>\""}], "}"}], ",",
RowBox[{"{",
RowBox[{
SuperscriptBox[
RowBox[{"(",
FractionBox["8", "365.25"], ")"}],
RowBox[{"2", "/", "3"}]], ",", "\"\<8\>\""}], "}"}], ",",
RowBox[{"{",
RowBox[{
SuperscriptBox[
RowBox[{"(",
FractionBox["9", "365.25"], ")"}],
RowBox[{"2", "/", "3"}]], ",", "\"\<9\>\""}], "}"}], ",",
RowBox[{"{",
RowBox[{
SuperscriptBox[
RowBox[{"(",
FractionBox["10", "365.25"], ")"}],
RowBox[{"2", "/", "3"}]], ",", "\"\<10\>\""}], "}"}]}], "}"}]}],
";"}]}], "Input",
CellChangeTimes->{{3.849304605606348*^9, 3.849304699953617*^9}, {
3.8493049555092697`*^9, 3.8493049668244753`*^9}, {3.8493050139442263`*^9,
3.8493050321053333`*^9}},
CellLabel->"In[55]:=",ExpressionUUID->"f497a36e-0ca8-4c26-8f8a-5b0743ffb71f"],
Cell[CellGroupData[{
Cell[BoxData[
RowBox[{"Rstarroche", "=",
RowBox[{
RowBox[{
RowBox[{
RowBox[{"(",
RowBox[{
FractionBox["Rstar", "AU"],
RowBox[{"Max", "[",
RowBox[{
SuperscriptBox[
RowBox[{"(", " ",
RowBox[{"2", " ",
FractionBox["\[Rho]star", "\[Rho]moon"]}], ")"}],
RowBox[{"1", "/", "3"}]], ",", "1"}], "]"}]}], ")"}], "/.",
RowBox[{"Rstar", "\[Rule]", "RSun"}]}], "/.",
RowBox[{"\[Rho]star", "\[Rule]",
FractionBox["MSun",
RowBox[{
RowBox[{"(",
RowBox[{"4", "/", "3"}], ")"}], "\[Pi]", " ",
SuperscriptBox["RSun", "3"]}]]}]}], "/.",
RowBox[{"\[Rho]moon", "\[Rule]",
FractionBox["MMoon",
RowBox[{
RowBox[{"(",
RowBox[{"4", "/", "3"}], ")"}], "\[Pi]", " ",
SuperscriptBox["RMoon", "3"]}]]}]}]}]], "Input",
CellChangeTimes->{{3.849346814578045*^9, 3.849346846595313*^9}},
CellLabel->"In[66]:=",ExpressionUUID->"ea13adae-3e69-4272-92a9-13592f951f6b"],
Cell[BoxData["0.004650463241487186`"], "Output",
CellChangeTimes->{3.849347236771668*^9, 3.849347269595933*^9},
CellLabel->"Out[66]=",ExpressionUUID->"c180fe98-94d9-4860-b988-aed285fc47ee"]
}, Open ]],
Cell[CellGroupData[{
Cell[BoxData[
RowBox[{"Show", "[",
RowBox[{
RowBox[{"LogPlot", "[",
RowBox[{
RowBox[{"Max", "[",
RowBox[{
RowBox[{"interp", "[", "x", "]"}], ",", "0.003"}], "]"}], ",",
RowBox[{"{",
RowBox[{"x", ",", "0", ",", "0.1"}], "}"}], ",",
RowBox[{"PlotRange", "\[Rule]",
RowBox[{"{",
RowBox[{
RowBox[{"{",
RowBox[{"0", ",",
SuperscriptBox[
RowBox[{"(",
FractionBox["10", "365.25"], ")"}],
RowBox[{"2", "/", "3"}]]}], "}"}], ",",
RowBox[{"{",
RowBox[{"0.01", ",", "10"}], "}"}]}], "}"}]}], ",",
RowBox[{"Frame", "\[Rule]", "True"}], ",",
RowBox[{"PlotStyle", "\[Rule]",
RowBox[{"Directive", "[",
RowBox[{"Brown", ",",
RowBox[{"Thickness", "[", "0.003", "]"}]}], "]"}]}], ",",
RowBox[{"GridLines", "\[Rule]",
RowBox[{"{",
RowBox[{
RowBox[{"{",
RowBox[{"{",
RowBox[{"Rstarroche", ",",
RowBox[{"Directive", "[",
RowBox[{"Black", ",",
RowBox[{"Dashing", "[", "0.02", "]"}]}], "]"}]}], "}"}], "}"}],
",",
RowBox[{"{", "}"}]}], "}"}]}], ",",
RowBox[{"FrameLabel", "\[Rule]",
RowBox[{"{",
RowBox[{
RowBox[{"{",
RowBox[{
"\"\<max safe orbital radius in Hill radii, \
\!\(\*SubscriptBox[\(f\), \(crit\)]\)\>\"", ",", "None"}], "}"}], ",",
RowBox[{"{",
RowBox[{
"\"\<planet's semi-major axis, \!\(\*SubscriptBox[\(a\), \(P\)]\) \
[AU]\>\"", ",",
"\"\<planet's orbital period, \!\(\*SubscriptBox[\(P\), \(P\)]\) \
[days]\>\""}], "}"}]}], "}"}]}], ",",
RowBox[{"AspectRatio", "\[Rule]", "0.5"}], ",",
RowBox[{"Filling", "\[Rule]", "10"}], ",",
RowBox[{"ImageSize", "\[Rule]",
RowBox[{"{",
RowBox[{"800", ",", "Automatic"}], "}"}]}], ",",
RowBox[{"FrameTicks", "\[Rule]",
RowBox[{"{",
RowBox[{
RowBox[{"{",
RowBox[{"Automatic", ",", "Automatic"}], "}"}], ",",
RowBox[{"{",
RowBox[{"xticks", ",", "xticks2"}], "}"}]}], "}"}]}], ",",
RowBox[{"BaseStyle", "\[Rule]",
RowBox[{"{",
RowBox[{
RowBox[{"FontFamily", "\[Rule]", "\"\<CMU Serif\>\""}], ",",
RowBox[{"FontSize", "\[Rule]", "22"}]}], "}"}]}], ",",
RowBox[{"Exclusions", "\[Rule]", "None"}]}], "]"}], ",",
RowBox[{"LogPlot", "[",
RowBox[{"0.9309", ",",
RowBox[{"{",
RowBox[{"ap", ",", "0", ",", "0.1"}], "}"}], ",",
RowBox[{"PlotStyle", "\[Rule]",
RowBox[{"Directive", "[",
RowBox[{"Black", ",",
RowBox[{"Thickness", "[", "0.003", "]"}]}], "]"}]}], ",",
RowBox[{"Filling", "\[Rule]", "10"}], ",",
RowBox[{"FillingStyle", "\[Rule]",
RowBox[{"HatchFilling", "[", "]"}]}]}], "]"}], ",",
RowBox[{"LogPlot", "[",
RowBox[{
RowBox[{
RowBox[{"(",
FractionBox["REarth",
RowBox[{"ap", " ", "AU"}]], ")"}],
SuperscriptBox[
RowBox[{"(",
FractionBox[
RowBox[{"3", " ", "MSun"}], "MEarth"], ")"}],
RowBox[{"1", "/", "3"}]]}], ",",
RowBox[{"{",
RowBox[{"ap", ",", "0", ",", "0.1"}], "}"}], ",",
RowBox[{"PlotStyle", "\[Rule]",
RowBox[{"Directive", "[",
RowBox[{"Red", ",",
RowBox[{"Thickness", "[", "0.003", "]"}]}], "]"}]}], ",",
RowBox[{"Filling", "\[Rule]", "0.005"}], ",",
RowBox[{"PlotRange", "\[Rule]", "All"}]}], "]"}], ",",
RowBox[{"LogPlot", "[",
RowBox[{
RowBox[{"fkane", "[",
RowBox[{"MSun", ",",
RowBox[{"ap", " ", "AU"}], ",",
RowBox[{"MMoon", "/",
RowBox[{"(",
RowBox[{
RowBox[{"(",
RowBox[{"4", "/", "3"}], ")"}], "\[Pi]", " ",
RowBox[{"RMoon", "^", "3"}]}], ")"}]}], ",",
RowBox[{"2", "^",
RowBox[{"(",
RowBox[{"1", "/", "3"}], ")"}]}]}], "]"}], ",",
RowBox[{"{",
RowBox[{"ap", ",", "0", ",", "0.1"}], "}"}], ",",
RowBox[{"PlotStyle", "\[Rule]",
RowBox[{"Directive", "[",
RowBox[{"Pink", ",",
RowBox[{"Thickness", "[", "0.003", "]"}]}], "]"}]}], ",",
RowBox[{"Filling", "\[Rule]", "0.005"}], ",",
RowBox[{"PlotRange", "\[Rule]", "All"}]}], "]"}]}], "]"}]], "Input",
CellChangeTimes->{{3.8493401830072393`*^9, 3.8493401853815317`*^9}, {
3.849340255049512*^9, 3.849340290653302*^9}, {3.8493403301755123`*^9,
3.8493403522443*^9}, 3.849347183203248*^9},
CellLabel->"In[67]:=",ExpressionUUID->"65e4bfc4-b92e-4b9e-bae6-333db535ce4e"],
Cell[BoxData[
GraphicsBox[{{GraphicsComplexBox[CompressedData["
1:eJw9l3k0FWy4xc855iHzXEgdQ2UoIik9J2QoISRKiTTyfUqDUg7HmJAxKVFR
iTMipOh9FUKGEppUZmV2TJlv96713T/2etb++/mtvfZW8/JzPE4iEAgzf/W/
N2ug9EJDlNoO2f1FL/N9pPB/Xu7/PImiciFmuMkvBNZ9LK3yVRTFc+c8lxlv
wkFb4WaZ/DF+zFonppDecB3KrQ/udSTz4gO8Hy0VdeMg1ibL800RCadfl5eT
KU+AQsdFju4bIp4Z3ChKfpUEm07W108rEHHjUZcV1wZSIJPLnkwKJ+BE/f7E
9vFUMBo0G/9HnIDPZrw5xzeaBm/jTaJGHJdRnSLD/ZJ8Ooj69GyWvb6EJCaW
60aVMsDccDTapHURffjuYZFvcx9+mIzunlRYRJ84EbHKJQ9Az+5g/BrPBbRd
LfF5X/FD+DU00c1TOI8O310z4FSfBS9CSdk3R+fQVMXpw7uassGJ4+l0SW8O
7eEatX3tfwTLDWvlqQ6zSHc095rz/GOoiDPK8fX8gyLvNns7LjwBv0iP0vgz
M+ieHc1xUuopVOaXze/bPo208ntpSvK5cKWLEWgzPYnMOkZ/kOXyQPO81Ptj
QRNIUSFk58f1dNCJH1fWjRxHJ5eqevl0GNDvbhdqaDWCzg8nxrdbMEHXz7Bl
bUcfEs3lOXn7AAv8O2zjNlu1ICXpDSFtB9igc+30eBqjEybMfJvajTjwT0fx
mpVP/0DKx4zghOccCH5unCakS6B0FLQm3LlTCv/9V/T8pUuv7oRCmF2troC/
IG5pKBF5VBMJHwUhM02BD5Nun9X7ungDEp+oxum48uBqYVrpaud4uEFuYJ/R
J2EbE7LkvfJEyPAp9eA9TcReT96IOrQkg2TK0meldwRcVHOGcz81F7zZp0S2
mk0i3YUtEtce5EGenfKh6gQuoohkJw/R6UALf+1Ze2YMDU/RTcafM8C6Vb3s
+twAorzbPb+1kQmtD7MtPe52IukjtyeKP7Eg3Oddxmf7NAipp4nXdLHhRZbh
W8G1XLAQicgpDuAAb+2+Ii5xEQTFVx9b+4cDv9KXeDpoRMqtCYL+23AaCFC2
CbCmhHD//dgIreoIsHNczlXl8GHXoyj7RW80vPxyk49bwoNvCqwnKO+8Cafv
vV2vfY6E/TszpF1NE+GUJOkLI4WItW0CRU1skiHEbjOZOE7AI9u1FL+75ILE
+ubL6zMnkfFIcoDDoTywt9mmdlJ4AjESEwc8fOgwVuwkZrI4htbPGSfM+zMg
uto/M71oCB10/3dXTDQT+q+28eX49aCEsL06ObdZoGlYWkM5XYUa/Nqs7DPY
cHds1GbDg0FYlXP5pc0BDigHuQkKLs6B3fiRcbfPHPAdrnAjdxAotXNbDs92
UEHvdWVcsI44DuMOvihihQE9vVVQ0VYAV8x3Jaq+iwLB85o3NVN5MaNB7eWs
bCxoUfTsi0g8eJnfd2uSQQLEXY1MffKHiMnC7U9zevMgu0m7giPORS3hz7Zf
GaKDWsEOjZm7o4gzrtLbt8SAL4YyNp9EfyMNE838X1IsePiUHih9tR2lGneW
Vsuz4ap34FQ56QPcTUn1WS3DgcrNByzuPJsCX7/E5LVpHNCt+ianUrMEr7U7
W4bk8yEqfkS/TpZE+WpQHb9nLgQa+evyvw8J4zHBgNcDFhHgRlq/hsnHj3mq
+r7nuUVD2lTu22NDPJgbQV2bXhIHrry+HGYSCfMXfZUxWkyAzVMD12PpRJx0
d78omycZmPmHBIp5iVhkJrJh3igXYHYNhV03iUz7d9JfGOdB0cILb6bFBOpq
EUxV3EOHA2PUimazcWR9bfkFwYEBB68syq4MG0Z95JABg5NM2Kgyu2xZ0Ivs
UrV23w9gwepv68Itw5rQhQpCT1IgG+i8AdeaUR8IXvTfJW3FgVsLcgaT32fh
nBfV+GINB4a9vfQcowkUiXBrlSedQUD+7Tgj2imBa/TzFUzIYdAQP3ijtVUA
13k3NHbaRIGSpa2reOvf/NW3mfodHQN6XV9NrLR5sFesdmrW93io85dnTsqQ
8DqeG+2Sb/LAWnbWz3gfFwnXbPilX08H9fdi6J7yGGo83ys+9I0BvIooNlV4
ABWStrokjjFhNjyLT3jhJ3LeU9b2aoYFxSXS5meeV8A/5fStr0kccMh+TD5P
mgRX0xjl4SgOMG9tv0gaWoTeDMIqQcF8+HGzdrtvA5HiULitxUw8FJI1c0+s
UhfCP4yyrE9YRULKqvX7vTz5cEOy+4MuOhM0jjY4HZbqRs1n/SXYJSxo86Bq
jvI8QxoqDLoIZsObrKdiW6XGYOMX6qaQkxy4IL86ZJ/gAoSe07xn2xEMAi7v
A/rPrcA7CjQOb9oaDjt6FvxcP/DjO+dkRSmGLLg2KWRpk/IZVfvQMqjqHNB0
WdxwH2Zg4ePTVyuKQsA6jXjH4qoIvmg61LGHNwLKmlzv7Tfgx64Bc3NZ0tEg
FnE+v0eAF5OrtAy/+seBhfeRGp5HJPxe5Yqs+vcE8DDrCLcoIWILc/PY3x1J
4Gfu5F4pRsRKzsWaIpq5cOrWo+K0jkmEuxWq/DTzwKjqbdtWzwlEvVTpM21C
hy0FhXrV3uPItdzLIWwHA5Sm7d9v6RtG2kJCpoIuTJDmbp2p2dOHmKqprukn
WWDUlttWIdeMrAZkCzafZsNxY6ZioVEPLB3yE/6zgwMxPIK5MpazQFop1h6K
OcBaqWVh7k6gFNa8py54BsF5qWfzojWSeKA52WrhRyh4yXnUeagJYvs7ZsNm
QlGgUf94ymj6bz70uEt1mcfAz3eNi4M7eXDKu7aczrR4KKjoo0SvJWHG8tHp
6vw8GDOi+Zqe46LHp/vLxcvoQCkp6Yi1GEM/nlk//reOAQeunWpXDx9Ac30V
T4//ZIIDuyBz5YcO9KxlXe+LfhY0/yt7pGv/M2Bm++7UmGSDt3pzqbfiBNiR
r3d9COZAx5jPk/eXF+GSSwKSJeTDzIj0jPhTIsXfSYWHr44GZOcbxYbRQtjL
R/7kW/5IOPZWvHEmig/LXO7lFt9lgpKvv+7Nym60ae6nCj2HBcOsXMM3HxCa
s6y4wmSxAd8VkLg0Ogwa+Oq0twcH7i/u20GImAeNYvZC1tFgCPahvjWjiOGj
jkKxExNh8Fn7vBPfCgHcsT/ziAyZBZ2hG6Dz1le0kRAb3rSKA7WNYy8HqNPw
PLn7aDTQ4IXgVRrDRxiPir7clh3FgsSG4373Y+qQL+Bye08qyPAwpfaslcBn
U5uU5/VCwKeqV6zrpSheQVZq+zcpBC5Y7RvaWCOCn3/SOLvQHQ7n1nVv4+7m
x2EO4UL3x67Dy+5SqUVZXvyqZ7H8ikMcuCzJqrQxSLjYqebWqoYEWEc03GZQ
TsSZ8ib1kU1J4La/a+GzNBE/JDW2SKnmgsZXu/GAwUlE9OJ1rFPJAwsP19mD
fhPI1iqrrUefDt9yymxjLo6jjsMy6ZWGDFCIG9ZfkhtBDlf3nvDfywSX6p+s
e6l9yL2n3uOOBwseFM5sOmnwEXGoq+9EHGXDENckLmK0Cy43DfsOmHBgAyyj
7zN/YM9MKzO6jAPGVHKO7S4ChXdQhq25Jggmyh4PJ9lJ4fk1fB6Hy0LhovZJ
ewEbQZxkEHRt4lckfHbnSoMAH/5U3rf6x+oYuHtDt+CPLQ/WGaRvpF2Kh11N
z3TH1pPwcJBtmFpuHiQlj6+TpHGRv0mV1lIhHTyDQQgfGEMn9s+NsisY8Kgh
MbUCDSBlN/7mpjYmULesUh8x6kTed44OPf/5l0/vt+2T+nkgZxygFTDIBgGf
faXP73Oh9jb/rsqrHAigXA/7aroISN81cdUCB3KXLixK3SJSwrPjlU7k0KCU
fNXa6ZUQfsTnOB3QFwFs99YVn9L58JaBdavUkphQHxoTMKPUgzpeyWnk3mfB
fG3A4oWi18j727ujS4/ZkFXZnKn4bggeGsy5HjjEAZMrg4czds7D5c8T2o2r
gyHFMVE/rEAM+2cFZjt/CIPYTQcTVbQFME9NVxR1JQvKTK2u98d8Q8d3S/4J
UOBA08Je7rDSNNR2O18eWEWD1jgvpYo8YZz5YdzsYTALIqrecOwlG9ArT96R
QDUq5AzUBaUESeC0nPEiCYkQ+ETfOKEjs+Jv/4u1+/AwCNTGvTZU2knilmSf
+oAHwVAZbWnLbl2BlZSvxZEfUuGgk3UvrUAcy9U3e6rSQuCLnca2HWMi+Au5
sqTlYzisOmEhN+HCjxVMayWUf16HZd2Ds6rKvPjGhVOhNhAH9jlr3GzySVhr
ZHS/QlUCcDMGDuphIq6jGfq2VidB4Z9bZSfkiLjnixtdbuVfnuMdA7vGJtEa
tcC0AKU84KcPn/K6NIEK9CRF23XpcI7gNNURNI7Iuv9Qjm9iwE9n85QNeiPI
69looKYNE8YHU6yjX/ahZ5anjqUdYoFk+Zs+r1cfUW/NY1FddzZo6JJM1O26
wEhIJ7PbmAO/30vTdd//gbO9pXJxLzjg/3Kg7tnWvzy/Kx9YQQ+F9kFyyqHD
grgwRKny3edIONrHDO0U58O+eRu03MVjQGbHbpGbjjx4LlBuyuF4PAjyzU3n
6ZKwmOnr2sZHebDH8N/Y0etc9GXN5iNTbDqIW0W9t/YcQ3nqTrccyhng9kDu
PHwfQLpJT/vCm5ngNVh8c/xUJyqbnx8t+caCOJcIIks1G/aELqSr9rPB9oSl
OfbkQuSHXZfKr3CAXKtD4Vu9CD2rt8+pzv3lq17IOSSGSIndY/1ELpUG5vbr
A4q/COFqx1FTh7YIML/gNjX8mA9br63f2BbHhBJx5sOIXT3IWK1g3dN0FjTY
nZI/JlWJ0tT3tTx5yIbDPy9vOWQ0BEf+2XrDwY0DC7Pbbl9RnYcHv2WrugnB
oCMV+rFtRAwH7jbQ48NhoBLBbVveJoBliBH3DORZsMZWwMOZtx2FjH7cZCvH
ASln40fiv6agOWYFb7oIDTZoUz3PvBPG0wZxlg+usuBrSLlfuW0j6vfXiEwg
UmFjFNN0JUsCa3NIoSsJIXCw80+8k9kKfKOE1ddHCwLxLi3hH9GSePFRnHdc
SDC0WDeekxIWw+a6meomNCrI6hzn2zkrjm85dO0/vpMKL135C13tJbD77+PV
Cxvy/39ftYp6F5yQDYL/9vX/AABgpf0=
"], {{
{RGBColor[0.6, 0.4, 0.2], Opacity[0.2], EdgeForm[None],
GraphicsGroupBox[
PolygonBox[{{246, 2, 1, 247, 171, 129, 242, 198, 91, 240, 196, 245,
154, 244, 200, 63, 234, 190, 148, 243, 199, 110, 241, 197, 155, 3,
201, 156, 114, 76, 238, 194, 152, 48, 228, 184, 142, 104, 33, 216,
172, 130, 92, 64, 235, 191, 149, 111, 4, 202, 157, 115, 77, 49, 229,
185, 143, 105, 34, 217, 173, 131, 93, 65, 5, 203, 158, 116, 78, 50,
35, 218, 174, 132, 94, 66, 6, 204, 159, 117, 79, 51, 36, 219, 175,
133, 95, 67, 7, 205, 160, 118, 80, 52, 37, 8, 206, 161, 119, 81, 53,
38, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 207,
162, 120, 82, 54, 39, 24, 208, 163, 121, 83, 55, 40, 220, 176, 134,
96, 68, 25, 209, 164, 122, 84, 56, 41, 221, 177, 135, 97, 69, 26,
210, 165, 123, 85, 57, 42, 222, 178, 136, 98, 70, 27, 211, 166, 124,
86, 58, 230, 186, 144, 106, 43, 223, 179, 137, 99, 71, 236, 192,
150, 112, 28, 212, 167, 125, 87, 239, 195, 153, 59, 231, 187, 145,
107, 44, 224, 180, 138, 100, 72, 29, 213, 168, 126, 88, 60, 232,
188, 146, 108, 45, 225, 181, 139, 101, 73, 237, 193, 151, 113, 30,
214, 169, 127, 89, 61, 233, 189, 147, 109, 46, 226, 182, 140, 102,
74, 31, 215, 170, 128, 90, 62, 47, 227, 183, 141, 103,
75}}]]}, {}, {}, {}}, {{}, {},
TagBox[
{RGBColor[0.6, 0.4, 0.2], Thickness[0.003], Opacity[1.],
LineBox[{247, 171, 129, 242, 198, 91, 240, 196, 245, 154, 244, 200,
63, 234, 190, 148, 243, 199, 110, 241, 197, 155, 3, 201, 156, 114,
76, 238, 194, 152, 48, 228, 184, 142, 104, 33, 216, 172, 130, 92,
64, 235, 191, 149, 111, 4, 202, 157, 115, 77, 49, 229, 185, 143,
105, 34, 217, 173, 131, 93, 65, 5, 203, 158, 116, 78, 50, 35, 218,
174, 132, 94, 66, 6, 204, 159, 117, 79, 51, 36, 219, 175, 133, 95,
67, 7, 205, 160, 118, 80, 52, 37, 8, 206, 161, 119, 81, 53, 38, 9,
10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 207, 162,
120, 82, 54, 39, 24, 208, 163, 121, 83, 55, 40, 220, 176, 134, 96,
68, 25, 209, 164, 122, 84, 56, 41, 221, 177, 135, 97, 69, 26, 210,
165, 123, 85, 57, 42, 222, 178, 136, 98, 70, 27, 211, 166, 124, 86,
58, 230, 186, 144, 106, 43, 223, 179, 137, 99, 71, 236, 192, 150,
112, 28, 212, 167, 125, 87, 239, 195, 153, 59, 231, 187, 145, 107,
44, 224, 180, 138, 100, 72, 29, 213, 168, 126, 88, 60, 232, 188,
146, 108, 45, 225, 181, 139, 101, 73, 237, 193, 151, 113, 30, 214,
169, 127, 89, 61, 233, 189, 147, 109, 46, 226, 182, 140, 102, 74,
31, 215, 170, 128, 90, 62, 47, 227, 183, 141, 103, 75, 246}]},
Annotation[#, "Charting`Private`Tag$20472891#1"]& ]}}], {}}, {
GraphicsComplexBox[CompressedData["
1:eJxTTMoPSmViYGAwA2IQvejVzpKz7Yp2Gfs92GaFbNp/ji1mZ65Igj2ML/LQ
N7L3YAGcX2g0+zHr0wo4X66k++35/AY4/1dh4v81h1vg/HWafBKzz3bA+eEs
l90k9Xrh/Nkd4mIieyfA+d9fG/Co7JsE559LCOOteTUFzp9o9HzinY/T4PyC
uYcLWd/PgPNPSa6JKROfDecLfP5/6r3UXDj/4t14l42e8+H86xtae2S3L4Dz
bRQn7ni2bSGcHztL6VXwmUVw/teDmbGu5xfD+d6fzK7der4Eztd7v7Im5PdS
OL9t1qWUoD/L4Pw5fo1BX4RWwPkaG582SomvhPOdHry/pyK2Cs6XlGhwvKy1
Gs5P/3f0KavuGji/+O3E/jsua+F8npXM6dPD18H5UsLaDdfC18P5n51yzt8x
2wDnT7k8t37CDgS/xmuR2zbzjXD+4aOZAusOIviuEjy/0502wfmq+YUvPp9F
8B3mbvzmGLAZzl+08Yg00wUEP/nULOcpUVvg/Phd3j0vbiP4u9btv86XsRXO
j+lks1r+EcG3tNbYy1i0Dc4v+cjjrPcXwX9Vd+alTP12OH/5p7jltf8Q/MNZ
W9I3dOxAhM+uJx5LOXfC+Q82XZ0wcyaCL3XvxsU8kQA4v9bsbs78QEz1YqFb
d2/MZnKA5ScYHwAbrqgG
"], {{
{GrayLevel[0], SurfaceAppearance[
"HatchFilling", "Angle" -> Rational[1, 4] Pi], EdgeForm[None],
GraphicsGroupBox[
PolygonBox[{{50, 53, 54, 1, 51, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12,
13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29,
30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46,
47, 48, 49, 52}}]]}, {}, {}, {}}, {{}, {},
TagBox[
{GrayLevel[0], Thickness[0.003], Opacity[1.],
LineBox[{1, 51, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16,
17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33,
34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 52,
50}]},
Annotation[#, "Charting`Private`Tag$20472941#1"]& ]}}], {}}, {
GraphicsComplexBox[CompressedData["
1:eJw9Vnk41Hsf1TAYIUmYwaBxkXLfZB/pM9ZL6mbJeoVQIopsFxEaJVGS5Vqm
RVqULNmalN83W0jZyp7Gvi/Zd2/v87zv+8d5znP+Pc95zjnSzpfMz+LY2Nge
/MJ/OHOc6ff5hvRRk7qYstskRdoXTnuml5ATROrqrRs3joJQ3wnbuA/e0G+S
fK58JQt8DqcP4If+hkrG0SGl0jaM7HdrqvFSOOh+2lol6Qxiaz5ntnMq6ZAx
tf9VadkElrufXzT9czRQ3c4udxbPYtYcrYbE3+OgQZfUcO3kPJYeLSIs9D4e
xrpTBtQiF7HliUO8MuUJEBEgse5ltox9cbLiuzKeCDw9plu1gqvY3cMjd3t+
JkPhjClrPW4N82ZU+uBn/gFJmRVqSP86Vk/MsQ8QSYdRSkhUkNomJjC/XT9D
YkCzisVuKfstrPm7o36B8QPYr/fK0oy+jbXnR8VKlD4EjifRoi3GbOiI9N03
wyWPYLi3NvcNYkOn0/aNWzRkgmGR0lML6g60+MH9tEHjY/CcvvIj+8kOZDKn
1tY1kgXUFMf8+T049PtM9pVT60/g8rPlgvJgHLqe1uJqvvEUPLnwdOU2HMr4
M8J8QfA5zDSeSJxXYUfyBUMRJJFs6J7WtHl4kx3psmZ6ZYRfAH9YzkXHTnZE
FA3XaVV4CZ7N26rXDnIgt63qIbxiDniePvNJIZAD+U7dvdOj/wqUUiYTyNUc
iDeb3S3FOhcySBUd3/nxiLTnQHibdR6IpEZcszLDo3ldz8YetXxobop/JZCC
R4mtjKvxb/LhnYKenVAbHl05lmlYol4AMpdFSzgFOVFltbtA7ocCkNVIFJU1
40QGorzrbrqvgVLW/d4qhhP9dslndP7zawjUCXBLquFENEbBko5pITiG8tCM
NjlRZkGVGK6pECLSetuuK3Ehl/o0vUS7Iihc+Dv57Xku5PjWJHa0uwjky140
zqZxobe5WDv/+WJoD93I3G7kQvY3OanPfhaDSAIQ63DcSFNL/v2OyyVgm9Np
z6fEjfx+8ur9vlkC91dcagWcudF4WMOY+NVS4JXi4qi/zY2ezTk8C90qBdku
68QiJjeq9Chyy49+Awp7x54ZjHAj0ttBoycEJkwuhlwaEiAg1utv8ampTEhc
v0lxPkpApN6O5otCpoA35jxXHbYMIYPrqlWfzsNyR4y5y/A3qLjpd9+41Q8c
VMw9J5JqMCs+2x/m/VdAKFp+6qgEC+P1DQgoT40Eg66Dshpqo9jXz6U7s2qv
w5fanZXsRdNYqNp3zwdmTPie/kyiSo6ACmJbcD5CNLCwy/5r7tgOWtbiy2VR
b1eYS2V8eLSvDy6o9oVcqL8MhV2+U//qeo0NSgafyRkIBt+dfHd5n3ZjSfNs
hz/SI6AsOsbZ1GQYG3kQGyVfEwVyUumTubQp7PgKyy5TkQk50a/m7MUJqNvf
aN8Tsg0s5w7LbO74CeatJn6X5Lyg2n8mQ33PRyD1cn2Q6wmAbVeKrJZuM1a3
pn56lRUG1rcsPp2g9WO5fp1hGf5MWLFDZDFlAvoxVu3qL3QI4rPVp8LbOGma
W9ds9HSdYYS3Xl2lfBBot1I8Nqp9wGzVS6DCPQFTyI7ZZzsYBDfuKf5ZR+3E
upRr7pishYOz3OJ7h2ND2Cx3YMW4fhSQx/ZoR4ZPYsqd/c2PxZig3cENj4UJ
aC1bYO0m8RTEWZb01EzOw3A35VvqqgesaIrNnY5sgmnl8rw37f7QcqFQojq/
AROgG5Gf9oUCvuyQorVyH5Zs2b3IcGFCR2DCQx9FAroso2vxjGwEtkf0DkkQ
N0BgqjV5mnEO3j+vLveq64Z3OuHHEMUeFp12HVfcOwUf77Vzpd9ggrD/dwbS
IKAjWTnyYUJSsByRYsrnzEuj42ajbQ6cgeO+ElIaJcOgUDLXV6XnA8kFVg1C
Wb9yMCV4Lc81CGK2HeJkN9qxjdbn5XzF4WCep1/SWDOI+WtPskw4ouCb0ia1
iDyJPa1zicsSZMK7Conuqj0ExFO1cHZD2Bzuce1XtMxYhEOsO/i8fndYMX4t
3PVbK3Q4EOUiLP1hlep/PDunDiusbQrbOBMKCp6UfUHZLIzH0L7gvh0TXgzu
ckpXIKAEG54DsUR9SMY/ZQyzb4PdT/jIfuMs2IxELVvO9ULDX64lh6XtIBJL
qtP3mwEq3aYyPYwJNiVtp6dVCehhhGrxS7IG1DZiAxL/sNPG7xy8LSJuBU27
y/hczs2BxWxQSAXlOJR5x/2q2VU49djqeFo8E04ejf5xV4uAlkSD8+8ICcB0
f+PL+iUBWjaHrPTAAyfYcdgjyq58BB6YPJTIxvnAwCg0+dPTQErAurBLJgjG
l2ICgu3aMT4ZUtvFhHBYV6AqatEHsTftst4bA3QI4bGj2k9NYCwdmQkZfiZw
3zxpaClIQILNw+nFe83A2bubze/6Elj1VzM0rd1hqVn5T8vIr3Biocb5rJA/
nGgtWsqh1GIcE0J5cvtCIblQsv25CwvTLxffJWnFhF1jlB//2k9AmZenk7eE
dSHkvLbDW1s22tV5f8fb666Af+JrTTFhwdfzVpMTkrZgShfUrrWbBb8NUWnx
YCZIlGv00lUICBVvxsYTVcDBi8M0kg9Pm8sgVzWRLMHJG4emZebBmcdhREX6
GCT6fYzVbV6D22IiL0ixTLD/zddhP5WANrXEg4rI8uBw6WjZSwqBFnlUFiOK
G8Ieqt5yZOgmRJzw+l5DOQJnd/EveNjjaKQDydPEJCaoiyhLrx0hIA/cXvRa
iA0Y+7gsYt7tob3D63jJ2zkBzZjfMM9gFOyEA7XE+r2hN+np1yriIzCSDjKZ
5QgCemASjYfQjgk3tJyRjAiHKfLfr945D2KdMlWlX1vpENsmn3jv6wS2GcpB
GtrJBMFhORfGbgJKbv+hJphkCqcYJTxlbMtwfoA1FrbbHaI0pUpclb8BN8YI
b5/3A+F3ZQXnTn/EFDfU/tDGhcLVNXXaDRoLc1rb0P5hwYQUrSDOYHkCenGV
1VC6Vwf6K8KYdV/YaAkL8S9bi13B/f4xecUSFthcOnnD6IENGNwvM4p+NQt3
NVZP9gQy4ZNuEGfTr/5qauxbwYkchlubTYrGQ3hawGMRR8W0UxAp3t+SeWMe
PERMJaYljaEry8x61GcdXlgvd3TdZAJ/DZHTX5OAxL0HTVOJMkDpyE7YlcpD
izERXWwhGcBcg2oy/5EtiHczM9aUpkL7xKPcQws4mrpbgERXAhNq4oy5DX/5
X5o/xlZDFoWLJuEv1PL4afnpRGmyuBoc9L3wxPQYB62X69SjRspBYKvqVV0d
4aJtThdjtilMKHr8h0Ku9q/8/ffPWWQkigUr7f3/nv1P/xv5Ps+U
"], {{{},
{RGBColor[1, 0, 0], Opacity[0.2], EdgeForm[None],
GraphicsGroupBox[
PolygonBox[{{1, 158, 159, 50, 157, 129, 153, 105, 125, 149, 85, 101,
121, 145, 69, 81, 97, 117, 141, 57, 64, 76, 92, 112, 136, 49, 48,
47, 46, 45, 44, 43, 42, 41, 40, 39, 38, 37, 36, 35, 34, 33, 32, 31,
30, 29, 28, 27, 26, 25, 24, 23, 22, 21, 20, 19, 18, 17, 16, 15, 14,
13, 12, 11, 10, 9, 8, 7, 56, 63, 75, 91, 111, 135, 6, 55, 62, 74,
90, 110, 134, 5, 68, 80, 96, 116, 140, 54, 61, 73, 89, 109, 133, 4,
67, 79, 95, 115, 139, 53, 60, 72, 88, 108, 132, 3, 66, 78, 94, 114,
138, 52, 83, 99, 119, 143, 59, 71, 87, 107, 131, 2, 84, 100, 120,
144, 65, 103, 123, 147, 77, 93, 113, 137, 51, 104, 124, 148, 82,
127, 151, 98, 118, 142, 58, 128, 152, 102, 155, 122, 146, 70, 156,
126, 150, 86, 154, 106, 130}}]]}, {}, {}}, {{}, {},
TagBox[
{RGBColor[1, 0, 0], Thickness[0.003], Opacity[1.],
LineBox[{1, 130, 106, 154, 86, 150, 126, 156, 70, 146, 122, 155, 102,
152, 128, 58, 142, 118, 98, 151, 127, 82, 148, 124, 104, 51, 137,
113, 93, 77, 147, 123, 103, 65, 144, 120, 100, 84, 2, 131, 107, 87,
71, 59, 143, 119, 99, 83, 52, 138, 114, 94, 78, 66, 3, 132, 108, 88,
72, 60, 53, 139, 115, 95, 79, 67, 4, 133, 109, 89, 73, 61, 54, 140,
116, 96, 80, 68, 5, 134, 110, 90, 74, 62, 55, 6, 135, 111, 91, 75,
63, 56, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22,
23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39,
40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 136, 112, 92, 76, 64, 57,
141, 117, 97, 81, 69, 145, 121, 101, 85, 149, 125, 105, 153, 129,
157, 50}]},
Annotation[#, "Charting`Private`Tag$20472990#1"]& ]}}], {}}, {
GraphicsComplexBox[CompressedData["
1:eJw9lmk4lIsbxhkzI0Uk6xANIw5xSrRIPa8sh1D2LYXoiGIilIoIRdmSiCEd
ayT79rZ434ROjn0qsq9D9iwVBsf/w/l/uK/nej7ez3U9v/umnqebXSBwcHCk
bep/M30C9Wm6Rz2ubPDuSOWoMtJMtkc9hBzB6pnl7Dg+D0KDxrZR765Aa136
I3liD3ipMoZJo9chd/E+76xnFkj5PJhuoQfBGbUzdkYazdiKl9NG/vtQ6OsL
eeQg2IcV/LZdjNEUDgat57ftRUcwayJTT1wlCjzuNZbdnvqGMcJFRYTexkI2
+mF41HQG+zm5j5dWHQeXrrnxKP6aw5odrfhuTcTDUk8Kbxg6jz1UHXvY8z0B
UudSZirVFrErqe+9SLNPgEdOx+BQxBLWIJ5v7yfKgHbah0fqvT8wgYWNhllK
KrxWT5PuIfzC2noddIoN0kBIZ9mZT2kZ6ygKi9xV+QzmT54FR40VTJP6sIpV
8RdUVPdeUlZYxc4my0yYN6aDn1uhnbMEG1t653ZWtyUD3vXqNvHPszHD+YNf
usYyweH3bfSM5jVMZTb3lsVqFjSfPup9JGUdu5vc7mLGzoYafisRWfMNLOVU
sNmi4HNwab3KMN3CgSsUjwZTRHPBZNbBYd2eAz8xMNtHE8mDkMB237f5HLi4
WJAWU/EFDLbJHRvc4MBd1+tGScr5MHj2Xnv4SU786vTDmB6dl5CdKJh86wkn
zpvL5ZpoXQACEuP9R4c4ccpOpaAv1oUQmZRzv4xGwBdOXG7pOVgEem0VZZ7u
BDyemXo7tqoIVJXcnLxzCfitk+l6FYeKIcn7+FuXUQL+vs5NoOBdMTAOv5IO
pXHhumK8q64nSiDpNWdd2VkuXI7uNb7QVAJTWimeC0lcOJJa/EPLpBQ+Bez7
I7uVC08vrpUgtJbCUjKxb4RIxJ0bkrXj7cpAYelpqpgmEXd4ZRg53l0Gqa9b
v5zyJOKvCrCO7RfLwShQJu9sBhG3jyBr5Hwvh6i4C7vlvxDxI0cV3nJ6V0Bz
/obzJSIJ9/nOq62yVgE7lyNaPNVJ+ERg4zfJ25UQvFt5m8J5Ep4zfy4nYL0S
GF0BDMEoEv7evcy1KLwK0oT5CzNekXDKqxH9LB4UnH785ac9QsIHSj7HJiWh
wMMuVMR3kHFKX2ebp5AJUPRfWfN0rsHNkVX12n8uQo77y0g0awxqInyeGjB9
wKTWmKqm1ghWfLb9ZkO3ADlNPFVl+RrjvernV510B9SrIsIcuTuwT02V2zL/
vgsZDRn9NzmHsICDvZfTTFEwT2miyayS8OLIdoKXEAK9tiEW8deISObSi59i
V1xA6gkp67fP03BJffDmpQZvyCdd/Sek4BOMSN9wyh++AT3Xx01Z3OnY4wUO
1Q+hwUAV1l2P3c/ExtIiwxTqw4BNPcAjHz2AGf0asEtXRoEawVx+NUvCu331
ZbKkbIC3IFlE68xPMGMa+tDlPSClO6PB8toQUPq438n3+EGJiq1Wri4OH1cO
nV0eCIRitYI00UP1WIHP18AUXxQ8zrDk/MlkvP9bnYuv0D6QyN3BkuHaihxZ
D7HRPnEe7pOS+M5VzQHyINGdXecFtZIfs64e7wTF3PsytiP+YHtRzVRT9gJ0
HaiPMVwJAroZpfzl723Y3JZrNRM6YcD6bF26yOjHDnwdasuQQKGkU0WPc4KE
r+QKrESIW0CGhXvzVr0VYHXLfk5adoc9DN+eioURmDlQXVjV4QtdkVN0O/F6
EAjVl8oeDADXBRn5Y1w1WIJl91KqMwqnrlfltHCQcW/aCfMcKX2oSl2N3XeE
ExGYZibMpP4J4e0NNccTJ+CNVtBJXNYeYgtfJ3YNL8KHRx3cjHsoPPDlypLi
JeOamfkKgUK7ITjYy6Awmh8JJcyF2yg5wZuqGk7Hsu+gWDE/WKvtBaxiVY99
lC5onhYMKXTxh7uN/ImPohOAzXxezVceBKfPo1kxCq2Y77GpAUNiGJi7Khba
dPZh2R+dozIFUdj/XntIZoyEb61dvMAWMYNccq9U0tIq7BuIIRUOuYGC7LsZ
H10WdJ4Tlw+29IXKt4pafrs+QunfrYFspwD4Qe9eiqjEsK169sVP7VCQHlV3
XV4j4XE2W5UixXXAivDyj8cFBMTuO3zguncBvn5X7C9RmoLGMy4VqlQ76OgL
tPpz5w/QCLV5zwhEoamC7WLEQ8afBauXv5A6DOYtST1YLRmZiNkbLSppBaMC
9I1s7BeYz/nfrJE1gja6VufKygZYZFgZJceiUHu8gDW7nYz/ELtRFCMkAGVD
ms8logSRXOIe6nCaI4iIual5HZ6HNMNnu3IJXjC6wpS15uuG3QLWpV00f7BX
UriTZ/EM+GiUL55xQXCiVF++Sa8Fq+rYc4U9HApPxUZePvftwwa0aJO07SgE
RPgal46ScME2FqNc2BT86THzlf1ssBqqSz1i7QbyY8H3SxZYYLxYf/6CkC84
yk0meGc3AHFSqFBeJgAsX7xN5Y54i+lUS/JLW6EQ+s2AFcUm4eneMwnrIieA
fFHU2v4uF3J7wdchetUF9mV0a7xYm4JPF62mJqVt4c+QehXesh/gwxajSt5A
Ia763OgQNxnHy9ciY8XVYOJynz5NYwsynyJV20qxBF96RbFq4DKc33puTI16
Ej6jx0D7MQcSLSGaR4lEoU0u6cI9PjK+dlTSv0xKAcY9xcqMTXiRO8f3YOKS
ehCfctPHeZITCTb26K2X1YS57eNTvBEkhKKUMCP+GIV8UVsFGwEy7k4QxkuE
OMBZxud0t5kw8oak5aFg5wgVsq/jJW7Ng53ItaMSQ1dgZ4uLk354N+hT/Q3n
iP5QsOfT/r0D6SDS2O4kHRwE5BBEgYk3Y19ptZWfmKFQXRTsJKrTh60FECmj
21AIZxm7r27yNqGj/6DgYxNwT3Fnr9uuwcXhgW+BO9xgmnL9uIbRGGzBUoM6
FnzgkeZId9Xlf0CZffCPY4QAYAzdZq3Q32COK+xj/eYo8Gqm8XVu8jPv9kBj
pbAWeNTYlFxa5ULiFmNfMMtdNv2XbCu/OA029NP39NNs4EwqXaOR/BMeHl4+
3XMNBS3tND6Vzfu3tgz+Ioiqgsha3p7JHTyIX4aog3KyBTyRSKhlDSyDu6jJ
rhlpA/jVdoeWMMqB5Fn/7OyKQCGkHviYm/8veWXEJEmcBgUdIQ+K6/iQ+4Zi
S+0UXSCyFrVzTxKQWFdTgyNUDXCevJnTvpuMHHL129UVh8LRaDp/Jj8Zryz6
xlEvJQa35F6aTk0LIEUMcaqU5EGo9NZ9Ou/HjfRxW/zVIrsXHryvUmEIbUPW
Zsox20QUFDM99vNu5tV/fc48JV7ixn7h/+fZf/u/AEDTUQ==
"], {{{},
{RGBColor[1, 0.5, 0.5], Opacity[0.2], EdgeForm[None],
GraphicsGroupBox[
PolygonBox[{{1, 158, 159, 50, 157, 129, 153, 105, 125, 149, 85, 101,
121, 145, 69, 81, 97, 117, 141, 57, 64, 76, 92, 112, 136, 49, 48,
47, 46, 45, 44, 43, 42, 41, 40, 39, 38, 37, 36, 35, 34, 33, 32, 31,
30, 29, 28, 27, 26, 25, 24, 23, 22, 21, 20, 19, 18, 17, 16, 15, 14,
13, 12, 11, 10, 9, 8, 7, 56, 63, 75, 91, 111, 135, 6, 55, 62, 74,
90, 110, 134, 5, 68, 80, 96, 116, 140, 54, 61, 73, 89, 109, 133, 4,
67, 79, 95, 115, 139, 53, 60, 72, 88, 108, 132, 3, 66, 78, 94, 114,
138, 52, 83, 99, 119, 143, 59, 71, 87, 107, 131, 2, 84, 100, 120,
144, 65, 103, 123, 147, 77, 93, 113, 137, 51, 104, 124, 148, 82,
127, 151, 98, 118, 142, 58, 128, 152, 102, 155, 122, 146, 70, 156,
126, 150, 86, 154, 106, 130}}]]}, {}, {}}, {{}, {},
TagBox[
{RGBColor[1, 0.5, 0.5], Thickness[0.003], Opacity[1.],
LineBox[{1, 130, 106, 154, 86, 150, 126, 156, 70, 146, 122, 155, 102,
152, 128, 58, 142, 118, 98, 151, 127, 82, 148, 124, 104, 51, 137,
113, 93, 77, 147, 123, 103, 65, 144, 120, 100, 84, 2, 131, 107, 87,
71, 59, 143, 119, 99, 83, 52, 138, 114, 94, 78, 66, 3, 132, 108, 88,
72, 60, 53, 139, 115, 95, 79, 67, 4, 133, 109, 89, 73, 61, 54, 140,
116, 96, 80, 68, 5, 134, 110, 90, 74, 62, 55, 6, 135, 111, 91, 75,
63, 56, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22,
23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39,
40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 136, 112, 92, 76, 64, 57,
141, 117, 97, 81, 69, 145, 121, 101, 85, 149, 125, 105, 153, 129,
157, 50}]},
Annotation[#, "Charting`Private`Tag$20473039#1"]& ]}}], {}}},
AspectRatio->0.5,
Axes->{True, True},
AxesLabel->{None, None},
AxesOrigin->{0, -4.605170185988091},
BaseStyle->{FontFamily -> "CMU Serif", FontSize -> 22},
CoordinatesToolOptions:>{"DisplayFunction" -> ({
Part[#, 1],
Exp[
Part[#, 2]]}& ), "CopiedValueFunction" -> ({
Part[#, 1],
Exp[
Part[#, 2]]}& )},
DisplayFunction->Identity,
Frame->{{True, True}, {True, True}},
FrameLabel->{{
FormBox[
"\"max safe orbital radius in Hill radii, \\!\\(\\*SubscriptBox[\\(f\\), \
\\(crit\\)]\\)\"", TraditionalForm], None}, {
FormBox[
"\"planet's semi-major axis, \\!\\(\\*SubscriptBox[\\(a\\), \\(P\\)]\\) \
[AU]\"", TraditionalForm],
FormBox[
"\"planet's orbital period, \\!\\(\\*SubscriptBox[\\(P\\), \\(P\\)]\\) \
[days]\"", TraditionalForm]}},
FrameTicks->FrontEndValueCache[{{Quiet[
Charting`ScaledTicks[{Log, Exp}][#, #2, {6, 6}]]& ,
Charting`ScaledFrameTicks[{Log, Exp}]}, {{{0,
FormBox["\"0\"", TraditionalForm]}, {0.01,
FormBox["\"0.01\"", TraditionalForm]}, {0.02,
FormBox["\"0.02\"", TraditionalForm]}, {0.03,
FormBox["\"0.03\"", TraditionalForm]}, {0.04,
FormBox["\"0.04\"", TraditionalForm]}, {0.05,
FormBox["\"0.05\"", TraditionalForm]}, {0.06,
FormBox["\"0.06\"", TraditionalForm]}, {0.07,
FormBox["\"0.07\"", TraditionalForm]}, {0.08,
FormBox["\"0.08\"", TraditionalForm]}, {0.09,
FormBox["\"0.09\"", TraditionalForm]}, {0.1,
FormBox["\"0.10\"", TraditionalForm]}}, {{0.019570707086403155`,
FormBox["\"1\"", TraditionalForm]}, {0.031066561016717863`,
FormBox["\"2\"", TraditionalForm]}, {0.04070871121611446,
FormBox["\"3\"", TraditionalForm]}, {0.049315091638972186`,
FormBox["\"4\"", TraditionalForm]}, {0.05722509467001106,
FormBox["\"5\"", TraditionalForm]}, {0.06462105100872974,
FormBox["\"6\"", TraditionalForm]}, {0.07161520019046208,
FormBox["\"7\"", TraditionalForm]}, {0.0782828283456126,
FormBox["\"8\"", TraditionalForm]}, {0.0846775316579313,
FormBox["\"9\"", TraditionalForm]}, {0.09083917547815536,
FormBox["\"10\"", TraditionalForm]}}}}, {{{{-4.605170185988091,
FormBox[
TagBox[
InterpretationBox["\"0.01\"", 0.01, AutoDelete -> True],
NumberForm[#, {
DirectedInfinity[1], 2}]& ], TraditionalForm], {0.01,
0.}}, {-2.995732273553991,
FormBox[
TagBox[
InterpretationBox["\"0.05\"", 0.05, AutoDelete -> True],
NumberForm[#, {
DirectedInfinity[1], 2}]& ], TraditionalForm], {0.01,
0.}}, {-2.3025850929940455`,
FormBox[
TagBox[
InterpretationBox["\"0.10\"", 0.1, AutoDelete -> True],
NumberForm[#, {
DirectedInfinity[1], 2}]& ], TraditionalForm], {0.01,
0.}}, {-0.6931471805599453,
FormBox[
TagBox[
InterpretationBox["\"0.50\"", 0.5, AutoDelete -> True],
NumberForm[#, {
DirectedInfinity[1], 2}]& ], TraditionalForm], {0.01, 0.}}, {0.,
FormBox["1", TraditionalForm], {0.01, 0.}}, {1.6094379124341003`,
FormBox["5", TraditionalForm], {0.01, 0.}}, {2.302585092994046,
FormBox["10", TraditionalForm], {0.01, 0.}}, {-5.298317366548036,
FormBox[
TemplateBox[{0., 0.}, "Spacer2"], TraditionalForm], {0.005,
0.}}, {-5.115995809754082,
FormBox[
TemplateBox[{0., 0.}, "Spacer2"], TraditionalForm], {0.005,
0.}}, {-4.961845129926823,
FormBox[
TemplateBox[{0., 0.}, "Spacer2"], TraditionalForm], {0.005,
0.}}, {-4.8283137373023015`,
FormBox[
TemplateBox[{0., 0.}, "Spacer2"], TraditionalForm], {0.005,
0.}}, {-4.710530701645918,
FormBox[
TemplateBox[{0., 0.}, "Spacer2"], TraditionalForm], {0.005,
0.}}, {-3.912023005428146,
FormBox[
TemplateBox[{0., 0.}, "Spacer2"], TraditionalForm], {0.005,
0.}}, {-3.506557897319982,
FormBox[
TemplateBox[{0., 0.}, "Spacer2"], TraditionalForm], {0.005,
0.}}, {-3.2188758248682006`,
FormBox[
TemplateBox[{0., 0.}, "Spacer2"], TraditionalForm], {0.005,
0.}}, {-2.8134107167600364`,
FormBox[
TemplateBox[{0., 0.}, "Spacer2"], TraditionalForm], {0.005,
0.}}, {-2.659260036932778,
FormBox[
TemplateBox[{0., 0.}, "Spacer2"], TraditionalForm], {0.005,
0.}}, {-2.5257286443082556`,
FormBox[
TemplateBox[{0., 0.}, "Spacer2"], TraditionalForm], {0.005,
0.}}, {-2.4079456086518722`,
FormBox[
TemplateBox[{0., 0.}, "Spacer2"], TraditionalForm], {0.005,
0.}}, {-1.6094379124341003`,
FormBox[
TemplateBox[{0., 0.}, "Spacer2"], TraditionalForm], {0.005,
0.}}, {-1.2039728043259361`,
FormBox[
TemplateBox[{0., 0.}, "Spacer2"], TraditionalForm], {0.005,
0.}}, {-0.916290731874155,
FormBox[
TemplateBox[{0., 0.}, "Spacer2"], TraditionalForm], {0.005,
0.}}, {-0.5108256237659907,
FormBox[
TemplateBox[{0., 0.}, "Spacer2"], TraditionalForm], {0.005,
0.}}, {-0.35667494393873245`,
FormBox[
TemplateBox[{0., 0.}, "Spacer2"], TraditionalForm], {0.005,
0.}}, {-0.2231435513142097,
FormBox[
TemplateBox[{0., 0.}, "Spacer2"], TraditionalForm], {0.005,
0.}}, {-0.10536051565782628`,
FormBox[
TemplateBox[{0., 0.}, "Spacer2"], TraditionalForm], {0.005, 0.}}, {
0.6931471805599453,
FormBox[
TemplateBox[{0., 0.}, "Spacer2"], TraditionalForm], {0.005, 0.}}, {
1.0986122886681098`,
FormBox[
TemplateBox[{0., 0.}, "Spacer2"], TraditionalForm], {0.005, 0.}}, {
1.3862943611198906`,
FormBox[
TemplateBox[{0., 0.}, "Spacer2"], TraditionalForm], {0.005, 0.}}, {
1.791759469228055,
FormBox[
TemplateBox[{0., 0.}, "Spacer2"], TraditionalForm], {0.005, 0.}}, {
1.9459101490553132`,
FormBox[
TemplateBox[{0., 0.}, "Spacer2"], TraditionalForm], {0.005, 0.}}, {
2.0794415416798357`,
FormBox[
TemplateBox[{0., 0.}, "Spacer2"], TraditionalForm], {0.005, 0.}}, {
2.1972245773362196`,
FormBox[
TemplateBox[{0., 0.}, "Spacer2"], TraditionalForm], {0.005, 0.}}, {
2.995732273553991,