You are given a 0-indexed integer array nums
and an integer k
.
You are initially standing at index 0
. In one move, you can jump at most k
steps forward without going outside the boundaries of the array. That is, you can jump from index i
to any index in the range [i + 1, min(n - 1, i + k)]
inclusive.
You want to reach the last index of the array (index n - 1
). Your score is the sum of all nums[j]
for each index j
you visited in the array.
Return the maximum score you can get.
Example 1:
Input: nums = [1,-1,-2,4,-7,3], k = 2 Output: 7 Explanation: You can choose your jumps forming the subsequence [1,-1,4,3] (underlined above). The sum is 7.
Example 2:
Input: nums = [10,-5,-2,4,0,3], k = 3 Output: 17 Explanation: You can choose your jumps forming the subsequence [10,4,3] (underlined above). The sum is 17.
Example 3:
Input: nums = [1,-5,-20,4,-1,3,-6,-3], k = 2 Output: 0
Constraints:
1 <= nums.length, k <= 105
-104 <= nums[i] <= 104
class Solution:
def maxResult(self, nums: List[int], k: int) -> int:
n = len(nums)
f = [0] * n
q = deque([0])
for i in range(n):
if i - q[0] > k:
q.popleft()
f[i] = nums[i] + f[q[0]]
while q and f[q[-1]] <= f[i]:
q.pop()
q.append(i)
return f[-1]
class Solution {
public int maxResult(int[] nums, int k) {
int n = nums.length;
int[] f = new int[n];
Deque<Integer> q = new ArrayDeque<>();
q.offer(0);
for (int i = 0; i < n; ++i) {
if (i - q.peekFirst() > k) {
q.pollFirst();
}
f[i] = nums[i] + f[q.peekFirst()];
while (!q.isEmpty() && f[q.peekLast()] <= f[i]) {
q.pollLast();
}
q.offerLast(i);
}
return f[n - 1];
}
}
class Solution {
public:
int maxResult(vector<int>& nums, int k) {
int n = nums.size();
int f[n];
f[0] = 0;
deque<int> q = {0};
for (int i = 0; i < n; ++i) {
if (i - q.front() > k) q.pop_front();
f[i] = nums[i] + f[q.front()];
while (!q.empty() && f[q.back()] <= f[i]) q.pop_back();
q.push_back(i);
}
return f[n - 1];
}
};
func maxResult(nums []int, k int) int {
n := len(nums)
f := make([]int, n)
q := []int{0}
for i, v := range nums {
if i-q[0] > k {
q = q[1:]
}
f[i] = v + f[q[0]]
for len(q) > 0 && f[q[len(q)-1]] <= f[i] {
q = q[:len(q)-1]
}
q = append(q, i)
}
return f[n-1]
}