@@ -255,10 +255,10 @@ namespace prlearn {
255255 auto c = clouds[s._cloud ]._nodes [s._nodes [i]]._q .avg ();
256256 fut = std::min (fut, c);
257257 if (c == best)
258- var = std::min (var, clouds[s._cloud ]._nodes [s._nodes [i]]._q .variance () );
258+ var = std::min (var, clouds[s._cloud ]._nodes [s._nodes [i]]._q ._variance );
259259 else if ((c < best && minimize) || (c > best && !minimize)) {
260260 best = c;
261- var = clouds[s._cloud ]._nodes [s._nodes [i]]._q .variance () ;
261+ var = clouds[s._cloud ]._nodes [s._nodes [i]]._q ._variance ;
262262 }
263263 }
264264 }
@@ -275,8 +275,8 @@ namespace prlearn {
275275 auto v = s._variance [d];
276276 v.first .avg () += best;
277277 v.second .avg () += best;
278- v.first .set_variance ( std::max (v.first .variance () , var) );
279- v.second .set_variance ( std::max (v.second .variance () , var) );
278+ v.first ._variance = std::max (v.first ._variance , var);
279+ v.second ._variance = std::max (v.second ._variance , var);
280280 tmpq[d].first .addPoints (v.first .cnt (), v.first .avg ());
281281 tmpq[d].second .addPoints (v.second .cnt (), v.second .avg ());
282282 mean.addPoints (v.first .cnt (), v.first .avg ());
@@ -288,8 +288,8 @@ namespace prlearn {
288288 auto v = s._old [d];
289289 v.first .avg () += best;
290290 v.second .avg () += best;
291- v.first .set_variance ( std::max (v.first .variance () , var) );
292- v.second .set_variance ( std::max (v.second .variance () , var) );
291+ v.first ._variance = std::max (v.first ._variance , var);
292+ v.second ._variance = std::max (v.second ._variance , var);
293293 old_mean.addPoints (v.first .cnt (), v.first .avg ());
294294 old_mean.addPoints (v.second .cnt (), v.second .avg ());
295295 old_var.push_back (v.first );
@@ -305,7 +305,7 @@ namespace prlearn {
305305 for (auto & s : sample_qvar) {
306306 {
307307 const auto dif = std::abs (s.avg () - mean._avg );
308- const auto std = std::sqrt (s.variance () );
308+ const auto std = std::sqrt (s._variance );
309309 auto var = (std::pow (dif + std, 2.0 ) + std::pow (dif - std, 2.0 )) / 2.0 ;
310310 svar.addPoints (s.cnt (), var);
311311 }
@@ -317,7 +317,7 @@ namespace prlearn {
317317 }
318318 {
319319 const auto dif = std::abs (s.avg () - dmin);
320- const auto std = std::sqrt (s.variance () );
320+ const auto std = std::sqrt (s._variance );
321321 auto var = (std::pow (dif + std, 2.0 ) + std::pow (dif - std, 2.0 )) / 2.0 ;
322322 vars[id].addPoints (s.cnt (), var);
323323 }
@@ -328,20 +328,18 @@ namespace prlearn {
328328
329329 for (auto & s : old_var) {
330330 const auto dif = std::abs (s.avg () - old_mean._avg );
331- const auto std = std::sqrt (s.variance () );
331+ const auto std = std::sqrt (s._variance );
332332 auto var = (std::pow (dif + std, 2.0 ) + std::pow (dif - std, 2.0 )) / 2.0 ;
333333 ovar.addPoints (s.cnt (), var);
334334 }
335335
336336 for (size_t i = 0 ; i < dimen; ++i) {
337- tmpq[i].first .set_variance ( vars[i]._avg ) ;
338- tmpq[i].second .set_variance ( vars[i + dimen]._avg ) ;
337+ tmpq[i].first ._variance = vars[i]._avg ;
338+ tmpq[i].second ._variance = vars[i + dimen]._avg ;
339339 }
340340
341- qvar_t nq (mean._avg , mean._cnt / (dimen * 2 ), 0 );
342- nq.set_variance (svar._avg );
343- qvar_t oq (old_mean._avg , old_mean._cnt / (dimen * 2 ), 0 );
344- oq.set_variance (ovar._avg );
341+ qvar_t nq (mean._avg , mean._cnt / (dimen * 2 ), svar._avg );
342+ qvar_t oq (old_mean._avg , old_mean._cnt / (dimen * 2 ), ovar._avg );
345343 return std::make_pair (nq, oq);
346344 }
347345
0 commit comments