Skip to content

Commit d38ef18

Browse files
authored
Replace deprecated optuna.suggest_loguniform(...) by optuna.suggest_float(..., log=True) (#362)
1 parent 309ad8c commit d38ef18

File tree

2 files changed

+11
-10
lines changed

2 files changed

+11
-10
lines changed

CHANGELOG.md

+1
Original file line numberDiff line numberDiff line change
@@ -17,6 +17,7 @@
1717
### Other
1818
- Added support for `ruff` (fast alternative to flake8) in the Makefile
1919
- Removed Gitlab CI file
20+
- Replaced deprecated `optuna.suggest_loguniform(...)` by `optuna.suggest_float(..., log=True)`
2021

2122
## Release 1.7.0 (2023-01-10)
2223

rl_zoo3/hyperparams_opt.py

+10-10
Original file line numberDiff line numberDiff line change
@@ -18,11 +18,11 @@ def sample_ppo_params(trial: optuna.Trial) -> Dict[str, Any]:
1818
batch_size = trial.suggest_categorical("batch_size", [8, 16, 32, 64, 128, 256, 512])
1919
n_steps = trial.suggest_categorical("n_steps", [8, 16, 32, 64, 128, 256, 512, 1024, 2048])
2020
gamma = trial.suggest_categorical("gamma", [0.9, 0.95, 0.98, 0.99, 0.995, 0.999, 0.9999])
21-
learning_rate = trial.suggest_loguniform("learning_rate", 1e-5, 1)
21+
learning_rate = trial.suggest_float("learning_rate", 1e-5, 1, log=True)
2222
lr_schedule = "constant"
2323
# Uncomment to enable learning rate schedule
2424
# lr_schedule = trial.suggest_categorical('lr_schedule', ['linear', 'constant'])
25-
ent_coef = trial.suggest_loguniform("ent_coef", 0.00000001, 0.1)
25+
ent_coef = trial.suggest_float("ent_coef", 0.00000001, 0.1, log=True)
2626
clip_range = trial.suggest_categorical("clip_range", [0.1, 0.2, 0.3, 0.4])
2727
n_epochs = trial.suggest_categorical("n_epochs", [1, 5, 10, 20])
2828
gae_lambda = trial.suggest_categorical("gae_lambda", [0.8, 0.9, 0.92, 0.95, 0.98, 0.99, 1.0])
@@ -86,7 +86,7 @@ def sample_trpo_params(trial: optuna.Trial) -> Dict[str, Any]:
8686
batch_size = trial.suggest_categorical("batch_size", [8, 16, 32, 64, 128, 256, 512])
8787
n_steps = trial.suggest_categorical("n_steps", [8, 16, 32, 64, 128, 256, 512, 1024, 2048])
8888
gamma = trial.suggest_categorical("gamma", [0.9, 0.95, 0.98, 0.99, 0.995, 0.999, 0.9999])
89-
learning_rate = trial.suggest_loguniform("learning_rate", 1e-5, 1)
89+
learning_rate = trial.suggest_float("learning_rate", 1e-5, 1, log=True)
9090
lr_schedule = "constant"
9191
# Uncomment to enable learning rate schedule
9292
# lr_schedule = trial.suggest_categorical('lr_schedule', ['linear', 'constant'])
@@ -159,8 +159,8 @@ def sample_a2c_params(trial: optuna.Trial) -> Dict[str, Any]:
159159
gae_lambda = trial.suggest_categorical("gae_lambda", [0.8, 0.9, 0.92, 0.95, 0.98, 0.99, 1.0])
160160
n_steps = trial.suggest_categorical("n_steps", [8, 16, 32, 64, 128, 256, 512, 1024, 2048])
161161
lr_schedule = trial.suggest_categorical("lr_schedule", ["linear", "constant"])
162-
learning_rate = trial.suggest_loguniform("learning_rate", 1e-5, 1)
163-
ent_coef = trial.suggest_loguniform("ent_coef", 0.00000001, 0.1)
162+
learning_rate = trial.suggest_float("learning_rate", 1e-5, 1, log=True)
163+
ent_coef = trial.suggest_float("ent_coef", 0.00000001, 0.1, log=True)
164164
vf_coef = trial.suggest_uniform("vf_coef", 0, 1)
165165
# Uncomment for gSDE (continuous actions)
166166
# log_std_init = trial.suggest_uniform("log_std_init", -4, 1)
@@ -216,7 +216,7 @@ def sample_sac_params(trial: optuna.Trial) -> Dict[str, Any]:
216216
:return:
217217
"""
218218
gamma = trial.suggest_categorical("gamma", [0.9, 0.95, 0.98, 0.99, 0.995, 0.999, 0.9999])
219-
learning_rate = trial.suggest_loguniform("learning_rate", 1e-5, 1)
219+
learning_rate = trial.suggest_float("learning_rate", 1e-5, 1, log=True)
220220
batch_size = trial.suggest_categorical("batch_size", [16, 32, 64, 128, 256, 512, 1024, 2048])
221221
buffer_size = trial.suggest_categorical("buffer_size", [int(1e4), int(1e5), int(1e6)])
222222
learning_starts = trial.suggest_categorical("learning_starts", [0, 1000, 10000, 20000])
@@ -277,7 +277,7 @@ def sample_td3_params(trial: optuna.Trial) -> Dict[str, Any]:
277277
:return:
278278
"""
279279
gamma = trial.suggest_categorical("gamma", [0.9, 0.95, 0.98, 0.99, 0.995, 0.999, 0.9999])
280-
learning_rate = trial.suggest_loguniform("learning_rate", 1e-5, 1)
280+
learning_rate = trial.suggest_float("learning_rate", 1e-5, 1, log=True)
281281
batch_size = trial.suggest_categorical("batch_size", [16, 32, 64, 100, 128, 256, 512, 1024, 2048])
282282
buffer_size = trial.suggest_categorical("buffer_size", [int(1e4), int(1e5), int(1e6)])
283283
# Polyak coeff
@@ -335,7 +335,7 @@ def sample_ddpg_params(trial: optuna.Trial) -> Dict[str, Any]:
335335
:return:
336336
"""
337337
gamma = trial.suggest_categorical("gamma", [0.9, 0.95, 0.98, 0.99, 0.995, 0.999, 0.9999])
338-
learning_rate = trial.suggest_loguniform("learning_rate", 1e-5, 1)
338+
learning_rate = trial.suggest_float("learning_rate", 1e-5, 1, log=True)
339339
batch_size = trial.suggest_categorical("batch_size", [16, 32, 64, 100, 128, 256, 512, 1024, 2048])
340340
buffer_size = trial.suggest_categorical("buffer_size", [int(1e4), int(1e5), int(1e6)])
341341
# Polyak coeff
@@ -391,7 +391,7 @@ def sample_dqn_params(trial: optuna.Trial) -> Dict[str, Any]:
391391
:return:
392392
"""
393393
gamma = trial.suggest_categorical("gamma", [0.9, 0.95, 0.98, 0.99, 0.995, 0.999, 0.9999])
394-
learning_rate = trial.suggest_loguniform("learning_rate", 1e-5, 1)
394+
learning_rate = trial.suggest_float("learning_rate", 1e-5, 1, log=True)
395395
batch_size = trial.suggest_categorical("batch_size", [16, 32, 64, 100, 128, 256, 512])
396396
buffer_size = trial.suggest_categorical("buffer_size", [int(1e4), int(5e4), int(1e5), int(1e6)])
397397
exploration_final_eps = trial.suggest_uniform("exploration_final_eps", 0, 0.2)
@@ -489,7 +489,7 @@ def sample_ars_params(trial: optuna.Trial) -> Dict[str, Any]:
489489
# n_eval_episodes = trial.suggest_categorical("n_eval_episodes", [1, 2])
490490
n_delta = trial.suggest_categorical("n_delta", [4, 8, 6, 32, 64])
491491
# learning_rate = trial.suggest_categorical("learning_rate", [0.01, 0.02, 0.025, 0.03])
492-
learning_rate = trial.suggest_loguniform("learning_rate", 1e-5, 1)
492+
learning_rate = trial.suggest_float("learning_rate", 1e-5, 1, log=True)
493493
delta_std = trial.suggest_categorical("delta_std", [0.01, 0.02, 0.025, 0.03, 0.05, 0.1, 0.2, 0.3])
494494
top_frac_size = trial.suggest_categorical("top_frac_size", [0.1, 0.2, 0.3, 0.5, 0.8, 0.9, 1.0])
495495
zero_policy = trial.suggest_categorical("zero_policy", [True, False])

0 commit comments

Comments
 (0)