Skip to content

Latest commit

 

History

History
106 lines (75 loc) · 4.31 KB

README.md

File metadata and controls

106 lines (75 loc) · 4.31 KB

Docling

Docling

DS4SD%2Fdocling | Trendshift

arXiv Docs PyPI version Python Poetry Code style: black Imports: isort Pydantic v2 pre-commit License MIT

Docling parses documents and exports them to the desired format with ease and speed.

Features

  • 🗂️ Reads popular document formats (PDF, DOCX, PPTX, Images, HTML, AsciiDoc, Markdown) and exports to Markdown and JSON
  • 📑 Advanced PDF document understanding including page layout, reading order & table structures
  • 🧩 Unified, expressive DoclingDocument representation format
  • 🤖 Easy integration with LlamaIndex 🦙 & LangChain 🦜🔗 for powerful RAG / QA applications
  • 🔍 OCR support for scanned PDFs
  • 💻 Simple and convenient CLI

Explore the documentation to discover plenty examples and unlock the full power of Docling!

Coming soon

  • ♾️ Equation & code extraction
  • 📝 Metadata extraction, including title, authors, references & language
  • 🦜🔗 Native LangChain extension

Installation

To use Docling, simply install docling from your package manager, e.g. pip:

pip install docling

Works on macOS, Linux and Windows environments. Both x86_64 and arm64 architectures.

More detailed installation instructions are available in the docs.

Getting started

To convert individual documents, use convert(), for example:

from docling.document_converter import DocumentConverter

source = "https://arxiv.org/pdf/2408.09869"  # document per local path or URL
converter = DocumentConverter()
result = converter.convert(source)
print(result.document.export_to_markdown())  # output: "## Docling Technical Report[...]"

Check out Getting started. You will find lots of tuning options to leverage all the advanced capabilities.

Get help and support

Please feel free to connect with us using the discussion section.

Technical report

For more details on Docling's inner workings, check out the Docling Technical Report.

Contributing

Please read Contributing to Docling for details.

References

If you use Docling in your projects, please consider citing the following:

@techreport{Docling,
  author = {Deep Search Team},
  month = {8},
  title = {Docling Technical Report},
  url = {https://arxiv.org/abs/2408.09869},
  eprint = {2408.09869},
  doi = {10.48550/arXiv.2408.09869},
  version = {1.0.0},
  year = {2024}
}

License

The Docling codebase is under MIT license. For individual model usage, please refer to the model licenses found in the original packages.

IBM ❤️ Open Source AI

Docling has been brought to you by IBM.