forked from AZMP-NL/python-toolbox
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathazmp_genReport.py
308 lines (256 loc) · 11 KB
/
azmp_genReport.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
# Preliminary attempt to build an "all inclusive" function
# that would generate all figures for AZMP resDoc.
import os
from seabird.cnv import fCNV
import matplotlib.pyplot as plt
import numpy as np
import numpy.ma as ma
from scipy.interpolate import griddata
from matplotlib.patches import Polygon
from matplotlib.collections import PatchCollection
## ---------- BOTTOM TEMPERATURE ---------- ##
%my_run azmp_bottomT.py # <--- should make a function taking spring/fall and year as input (must run twice now)
os.system('cp bottomT_fall2017.png bottomT_spring2017.png ~/to_windows/')
%my_run azmp_bottomS.py # <--- Now climato is 1981-2010 while Eugene uses 2000-2015
os.system('cp bottomS_fall2017.png bottomS_spring2017.png ~/to_windows/')
%my_run azmp_bottom_stats.py # <--- should make a function taking spring/fall as input (must run twice now)
%my_run azmp_bottomT_scorecards.py
os.system('cp scorecards_botT_spring.png scorecards_botT_fall.png ~/to_windows/')
%my_run azmp_bottomT_mean_anomaly.py
os.system('cp mean_anomalies_fall.png mean_anomalies_spring.png ~/to_windows/')
## ---------------------------------------- ##
# $ grep -l SEGB 39173/*.cnv > SEGB2017.list
#filelist = np.genfromtxt('SESPB2017.list', dtype=str)
#filelist = np.genfromtxt('SWSPB2017.list', dtype=str)
#filelist = np.genfromtxt('FC2017.list', dtype=str)
#filelist = np.genfromtxt('BB2017.list', dtype=str)
#filelist = np.genfromtxt('TEL176_FC.list', dtype=str)
#filelist = np.genfromtxt('TEL176_BB.list', dtype=str)
#filelist = np.genfromtxt('TEL176_WB.list', dtype=str)
#filelist = np.genfromtxt('TEL176_SI.list', dtype=str)
filelist = np.genfromtxt('TEL176_MB.list', dtype=str)
#filelist = np.genfromtxt('TEL176_BI.list', dtype=str)
## ------------------------------------------------------------- ##
LATlist = []
LONlist = []
Tlist = []
Slist = []
Plist = []
Clist = []
SIGlist = [];
Flist = [];
O2list = [];
PHlist = [];
for fname in filelist:
profile = fCNV(fname)
LATlist.append(profile.attributes['LATITUDE'])
LONlist.append(profile.attributes['LONGITUDE'])
# Must get profile, remove upcast + 5-m bin average
P = np.array(profile['PRES'])
T = np.array(profile['TEMP'])
S = np.array(profile['PSAL'])
C = np.array(profile['CNDC'])
SIG = np.array(profile['sigma_t'])
F = np.array(profile['flECO-AFL'])
O2 = np.array(profile['oxigen_ml_L'])
PH= np.array(profile['ph'])
Ibtm = np.argmax(P)
digitized = np.digitize(P[0:Ibtm], Pbin) #<- this is awesome!
Tlist.append([T[0:Ibtm][digitized == i].mean() for i in range(0, len(Pbin))])
Slist.append([S[0:Ibtm][digitized == i].mean() for i in range(0, len(Pbin))])
Plist.append([P[0:Ibtm][digitized == i].mean() for i in range(0, len(Pbin))])
Clist.append([C[0:Ibtm][digitized == i].mean() for i in range(0, len(Pbin))])
SIGlist.append([SIG[0:Ibtm][digitized == i].mean() for i in range(0, len(Pbin))])
Flist.append([F[0:Ibtm][digitized == i].mean() for i in range(0, len(Pbin))])
O2list.append([O2[0:Ibtm][digitized == i].mean() for i in range(0, len(Pbin))])
PHlist.append([PH[0:Ibtm][digitized == i].mean() for i in range(0, len(Pbin))])
# List2Array
LATarray = np.array(LATlist)
LONarray = np.array(LONlist)
Tarray = np.transpose(np.array(Tlist))
Sarray = np.transpose(np.array(Slist))
Parray = np.transpose(np.array(Plist))
SIGarray = np.transpose(np.array(SIGlist))
Farray = np.transpose(np.array(Flist))
Oarray = np.transpose(np.array(O2list))
PHarray = np.transpose(np.array(PHlist))
# Compute along-transect distance
from math import radians, cos, sin, asin, sqrt
from math import radians, cos, sin, asin, sqrt
def haversine(lon1, lat1, lon2, lat2):
"""
Calculate the great circle distance between two points
on the earth (specified in decimal degrees)
"""
# convert decimal degrees to radians
lon1, lat1, lon2, lat2 = map(radians, [lon1, lat1, lon2, lat2])
dlon = lon2 - lon1
dlat = lat2 - lat1
a = sin(dlat/2)**2 + cos(lat1) * cos(lat2) * sin(dlon/2)**2
c = 2 * asin(sqrt(a))
km = 6367 * c
return km
distance = np.zeros(np.shape(LATarray))
for i in range(len(LATarray)):
distance[i] = haversine(LONarray[0], LATarray[0], LONarray[i], LATarray[i])
# Sort arrays according to distance
I = np.argsort(distance)
distance = distance[I]
LATarray = LATarray[I]
LONarray = LONarray[I]
Tarray = Tarray[:,I]
Sarray = Sarray[:,I]
Parray = Parray[:,I]
SIGarray = SIGarray[:,I]
Farray = Farray[:,I]
Oarray = Oarray[:,I]
PHarray = PHarray[:,I]
## # for bathymetry:
## if 'bathy' in locals():
## bathy_x = np.append(distance, [distance[-1], distance[0], distance[0] ])
## bathy_y = np.append(bathy, [np.max(bathy), np.max(bathy), bathy[0]])
## bathymetry = zip(bathy_x, bathy_y)
# for GEBCO bathymetry
import coord_list
import netCDF4
import get_GEBCO
interval = 10000.0 #meters
azimuth = coord_list.calculateBearing(LATarray[0], LONarray[0], LATarray[-1], LONarray[-1])
coords = coord_list.main(interval,azimuth,LATarray[0], LONarray[0], LATarray[-1], LONarray[-1])
lat_max = max(l[0] for l in coords)
lat_min = min(l[0] for l in coords)
lon_max = max(l[1] for l in coords)
lon_min = min(l[1] for l in coords)
lat, lon, Z = get_GEBCO.main('/home/cyrf0006/Data/GEBCO/GEBCO_08.nc', [-lat_max, -lat_min, lon_min, lon_max])
lat = -lat
Z = -Z
X, Y = np.meshgrid(lon, lat) # grid X,Y
X = X.reshape(np.size(Z)) #<--- check if a fonction exists for that
Y = Y.reshape(np.size(Z))
Z = Z.reshape(np.size(Z))
bathy = []
distance_bathy = []
print "Computing bathymetry..."
for i in range(0,len(coords)):
optim = np.abs(np.array(coords[i]) - np.array(zip(Y,X)))
optim_sum = optim.sum(axis=1)
min_idx = np.argmin(optim_sum)
bathy = np.append(bathy, Z[min_idx])
distance_bathy = np.append(distance_bathy, haversine(coords[0][1], coords[0][0], coords[i][1], coords[i][0]))
print "done!"
# Check which direction we are going (approaching St.27 or not)
if haversine(LONarray[0], LATarray[0], St27[1], St27[0]) > haversine(LONarray[-1], LATarray[-1], St27[1], St27[0]):
distance = np.abs(distance-distance.max())
if 'bathy' in locals():
distance_bathy = np.abs(distance_bathy - distance_bathy.max())
# Check maximum depth
cast_depth = []
for i in distance:
min_idx = np.argmin(np.abs(i-distance_bathy))
cast_depth = np.append(cast_depth, bathy[min_idx])
# Bathymetry Polygon
bathy_x = np.append(distance_bathy, [distance_bathy[-1], distance_bathy[0], distance_bathy[0] ])
bathy_y = np.append(bathy, [np.max(bathy), np.max(bathy), bathy[0]])
bathymetry = zip(bathy_x, bathy_y)
## ---- now plot ---- ##
fig, axes = plt.subplots(nrows=5, ncols=1)
# S0 - T
plt.axes(axes[0])
ctf = plt.contourf(distance, Pbin, Tarray, 30, cmap=plt.cm.RdBu_r, y_dir='reverse')
c_cil = plt.contour(distance, Pbin, Tarray, [0,], colors='k', linewidths=2)
ct = plt.contour(distance, Pbin, SIGarray, 10, colors='k', linewidths=0.5)
cl = plt.colorbar(ctf, orientation='vertical')
axes[0].tick_params(labelbottom='off')
axes[0].set_ylim(YLIMS)
axes[0].set_ylabel('Depth (m)')
axes[0].invert_yaxis()
axes[0].text(5, YLIMS[1]*.90, r'T($^{\circ}$C)', horizontalalignment='left', verticalalignment='center', fontsize=16, color='k')
# print bathymetry
if 'bathy' in locals():
Bgon = plt.Polygon(bathymetry,color=np.multiply([1,.9333,.6667],.4), alpha=0.8)
axes[0].add_patch(Bgon)
for i in range(0,len(distance)):
plt.plot(np.array([distance[i], distance[i]]), np.array([Pbin[0], cast_depth[i]]), '--k', linewidth=0.1)
# CIL surface
def area(vs):
a = 0
x0,y0 = vs[0]
for [x1,y1] in vs[1:]:
dx = x1-x0
dy = y1-y0
a += 0.5*(y0*dx - x0*dy)
x0 = x1
y0 = y1
return a
CIL = c_cil.collections[0]
vs = CIL.get_paths()[0].vertices
cil_vol2 = np.abs(area(vs))/1000.
print cil_vol2
# S1 - S
plt.axes(axes[1])
ctf = plt.contourf(distance, Pbin, Sarray, 30, cmap=plt.cm.RdBu_r)
ct = plt.contour(distance, Pbin, SIGarray, 10, colors='k', linewidths=0.5)
cl = plt.colorbar(ctf, orientation='vertical')
axes[1].tick_params(labelbottom='off')
axes[1].set_ylim(YLIMS)
axes[1].set_ylabel('Depth (m)')
axes[1].invert_yaxis()
axes[1].text(5, YLIMS[1]*.90, r'$\rm S_p$', horizontalalignment='left', verticalalignment='center', fontsize=16, color='k')
plt.plot(np.array([distance[i], distance[i]]), np.array([Pbin[0], cast_depth[i]]), '--k', linewidth=0.1)
if 'bathy' in locals():
Bgon = plt.Polygon(bathymetry,color=np.multiply([1,.9333,.6667],.4), alpha=0.8)
axes[1].add_patch(Bgon)
for i in range(0,len(distance)):
plt.plot(np.array([distance[i], distance[i]]), np.array([Pbin[0], cast_depth[i]]), '--k', linewidth=0.1)
# S2 - O2
plt.axes(axes[2])
ctf = plt.contourf(distance, Pbin, Oarray, 30, cmap=plt.cm.RdBu)
ct = plt.contour(distance, Pbin, SIGarray, 10, linewidths=0.5, colors='k')
cl = plt.colorbar(ctf, orientation='vertical')
axes[2].tick_params(labelbottom='off')
axes[2].set_ylim(YLIMS)
axes[2].set_ylabel('Depth (m)')
axes[2].invert_yaxis()
axes[2].text(5, YLIMS[1]*.90, r'$\rm O_2$($\rm ml L^{-1}$)', horizontalalignment='left', verticalalignment='center', fontsize=16, color='k')
if 'bathy' in locals():
Bgon = plt.Polygon(bathymetry,color=np.multiply([1,.9333,.6667],.4), alpha=0.8)
axes[2].add_patch(Bgon)
for i in range(0,len(distance)):
plt.plot(np.array([distance[i], distance[i]]), np.array([Pbin[0], cast_depth[i]]), '--k', linewidth=0.1)
# S3 - CHL
plt.axes(axes[3])
cf = plt.contourf(distance, Pbin, Farray, levels=np.arange(0, CHL_MAX, 1), cmap=plt.cm.PuBuGn, extend="max") #extend='both'
cc = plt.contour(distance, Pbin, SIGarray, 10, linewidths=0.5, colors='k')
cf.cmap.set_under('k')
cf.set_clim(0, CHL_MAX)
cb = plt.colorbar(cf)
axes[3].set_ylim(YLIMS)
axes[3].tick_params(labelbottom='off')
axes[3].set_ylabel('Depth (m)')
axes[3].invert_yaxis()
axes[3].text(5, YLIMS[1]*.90, r'chl-a($\rm mg m^{-3}$)', horizontalalignment='left', verticalalignment='center', fontsize=16, color='k')
if 'bathy' in locals():
Bgon = plt.Polygon(bathymetry,color=np.multiply([1,.9333,.6667],.4), alpha=0.8)
axes[3].add_patch(Bgon)
for i in range(0,len(distance)):
plt.plot(np.array([distance[i], distance[i]]), np.array([Pbin[0], cast_depth[i]]), '--k', linewidth=0.1)
# S4 - PH
plt.axes(axes[4])
ctf = plt.contourf(distance, Pbin, PHarray, 30, cmap=plt.cm.RdBu)
ct = plt.contour(distance, Pbin, SIGarray, 10, linewidths=0.5, colors='k')
cl = plt.colorbar(ctf, orientation='vertical')
axes[4].set_ylim(YLIMS)
axes[4].set_ylabel('Depth (m)')
axes[4].set_xlabel('Along-transect distance (km)')
axes[4].invert_yaxis()
axes[4].text(5, YLIMS[1]*.90, 'pH', horizontalalignment='left', verticalalignment='center', fontsize=16, color='k')
if 'bathy' in locals():
Bgon = plt.Polygon(bathymetry,color=np.multiply([1,.9333,.6667],.4), alpha=0.8)
axes[4].add_patch(Bgon)
for i in range(0,len(distance)):
plt.plot(np.array([distance[i], distance[i]]), np.array([Pbin[0], cast_depth[i]]), '--k', linewidth=0.1)
fig.set_size_inches(w=6,h=8)
fig.tight_layout()
fig_name = 'transect_to-be-rename.pdf'
fig.savefig(fig_name)
#os.system('pdfcrop %s %s &> /dev/null &'%(fig_name, fig_name))