-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathdqn_cuda.py
130 lines (113 loc) · 4.31 KB
/
dqn_cuda.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
# Here we import all libraries
import numpy as np
import gym
import matplotlib.pyplot as plt
import os
import torch
import random
from torch import nn
from torch.utils.data import DataLoader
from torchvision import datasets, transforms
from collections import deque
import torchvision as tv
import torch.nn.functional as F
import sys
env = gym.make("PongNoFrameskip-v4")
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
#Hyperparameters
episodes = 200000
eps = 1.0
learning_rate = 0.0001
tot_rewards = []
tot_loss = []
decay_val = 0.0001
mem_size = 20000
batch_size = 128
gamma = 0.99
update_target = 200
max_steps = 200
PATH = "./saved_models/pong_batch_size_352"
class NeuralNetwork(nn.Module):
def __init__(self, state_size, action_size):
super(NeuralNetwork, self).__init__()
self.state_size = state_size
self.action_size = action_size
self.grayscale = tv.transforms.Grayscale()
self.conv1 = nn.Conv2d(1,6,5)
self.pool = nn.MaxPool2d(2,2)
self.conv2 = nn.Conv2d(6,16,3)
self.conv3 = nn.Conv2d(16, 32, 3)
self.fc1 = nn.Linear(13824, 120)
self.fc2 = nn.Linear(120, 84)
self.fc3 = nn.Linear(84, action_size)
def forward(self, x):
x = self.grayscale(x)
x = self.pool(F.relu(self.conv1(x)))
x = self.pool(F.relu(self.conv2(x)))
x = self.pool(F.relu(self.conv3(x)))
x = torch.flatten(x, 1)
x = F.relu(self.fc1(x))
x = F.relu(self.fc2(x))
x = self.fc3(x)
return x
print(env.observation_space.shape[-1])
model = NeuralNetwork(env.observation_space.shape[-1], env.action_space.n).to(device)
target = NeuralNetwork(env.observation_space.shape[-1], env.action_space.n).to(device)
opt = torch.optim.Adam(params=model.parameters(), lr=learning_rate)
replay_buffer = deque(maxlen=mem_size)
def compute_td_loss(batch_size):
state, next_state, reward, done, action = zip(*random.sample(replay_buffer, batch_size))
state = torch.stack(list(state), dim=0).squeeze(1)
state= state.reshape(batch_size, 3, 210, 160).to(device)
next_state = torch.from_numpy(np.array(next_state)).reshape(batch_size, 3, 210, 160).type(torch.float32).to(device)
reward = torch.from_numpy(np.array(reward)).to(device)
done = torch.from_numpy(np.array(done)).long().to(device)
action = torch.from_numpy(np.array(action)).type(torch.int64).to(device)
q_values = model(state)
next_q_values = target(next_state)
q_vals = q_values.gather(dim=-1, index=action.reshape(-1,1))
max_next_q_values = torch.max(next_q_values,-1)[0].detach()
loss = ((reward + gamma*max_next_q_values*(1-done) - q_vals.squeeze())**2).mean()
opt.zero_grad()
loss.backward()
opt.step()
return loss
if os.path.exists(PATH):
model.load_state_dict(torch.load(PATH))
else:
frame_index = 0
for i in range(episodes):
state = torch.tensor(env.reset(), dtype=torch.float32).unsqueeze(0)
state= state.reshape(1, 3, 210, 160)
done = False
steps = 0
eps_rew = 0
eps_loss = 0
while not done:
print("frame_index = ", frame_index, "episode = ", i)
if np.random.uniform(0,1)<eps:
action = env.action_space.sample()
else:
action = torch.argmax(model(state.to(device))).cpu().detach().numpy()
next_state, reward, done, info = env.step(action)
replay_buffer.append((state, next_state, reward, done, action))
if len(replay_buffer)==mem_size:
loss = compute_td_loss(batch_size)
eps_loss += loss.cpu().detach().numpy()
eps = eps/(1 + decay_val)
eps_rew += reward
if steps%update_target==0:
target.load_state_dict(model.state_dict())
if done:
tot_rewards.append(eps_rew)
break
state = torch.tensor(next_state, dtype=torch.float32).unsqueeze(0)
state= state.reshape(1, 3, 210, 160)
steps += 1
frame_index += 1
tot_rewards.append(eps_rew)
tot_loss.append(eps_loss)
if(i%10)==0:
np.savetxt("tot_rewards.csv", np.array(tot_rewards), delimiter=' ', fmt='%s')
torch.save(model.state_dict(), PATH)
torch.save(model.state_dict(), PATH)