-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathdyna.py
93 lines (80 loc) · 3.1 KB
/
dyna.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
import numpy as np
import gymnasium as gym
import matplotlib.pyplot as plt
env = gym.make("CliffWalking-v0")
episodes = 500
eps = 1.0
learning_rate = 0.1
discount_factor = 0.99
def dyna(eps):
tot_rewards = []
buffer = []
n_iters = 500
Q = np.zeros((env.observation_space.n, env.action_space.n))
mod_reward = np.zeros((env.observation_space.n, env.action_space.n))
mod_next_state = np.zeros((env.observation_space.n, env.action_space.n))
for i in range(episodes):
state = env.reset()[0]
done = False
steps = 0
eps_reward = 0
while not done and steps < 50:
if np.random.uniform(0, 1) < eps:
action = env.action_space.sample()
else:
action = np.argmax(Q[state, :])
next_state, reward, terminated, truncated, info = env.step(action)
buffer.append((state, action))
Q[state, action] = Q[state, action] + learning_rate * (
reward + discount_factor * np.max(Q[next_state, :]) - Q[state, action])
mod_reward[state, action] = reward
mod_next_state[state, action] = next_state
eps = eps / (1 + 0.001)
eps_reward += reward
if terminated:
break
state = next_state
steps += 1
tot_rewards.append(eps_reward)
for _ in range(n_iters):
rand_index = np.random.randint(0, len(buffer))
rand_state_index = buffer[rand_index][0]
rand_action_index = buffer[rand_index][1]
sampled_reward = int(mod_reward[rand_state_index, rand_action_index])
sampled_next_state = int(mod_next_state[rand_state_index, rand_action_index])
Q[rand_state_index, rand_action_index] = Q[rand_state_index, rand_action_index] + learning_rate * (
sampled_reward + discount_factor * np.max(Q[sampled_next_state, :]) - Q[
rand_state_index, rand_action_index])
return tot_rewards
def q_learning(eps):
# Hyperparameters
tot_rewards = []
# Minimal Q learning example
Q = np.zeros((env.observation_space.n, env.action_space.n))
for i in range(episodes):
state = env.reset()[0]
done = False
steps = 0
eps_rew = 0
while not done and steps < 50:
if np.random.uniform(0, 1) < eps:
action = env.action_space.sample()
else:
action = np.argmax(Q[state, :])
next_state, reward, terminated, truncated, info = env.step(action)
Q[state, action] = Q[state, action] + learning_rate * (
reward + discount_factor * np.max(Q[next_state, :]) - Q[state, action])
eps = eps / (1 + 0.001)
eps_rew += reward
if terminated or truncated:
break
state = next_state
steps += 1
tot_rewards.append(eps_rew)
return tot_rewards
dyna_returns = dyna(eps)
q_returns = q_learning(eps)
plt.plot(dyna_returns, label='dyna')
plt.plot(q_returns, label='q_learning')
plt.legend()
plt.show()